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Researchers remain active during Recovery period

 Participation in and development of collaborations for FY17-19

— Experiments on other facilities/theory that address NSTX-U Research
Goals for guiding future operations, and which are of benefit to STs and
non-STs

— DIII-D major collaboration through integration of PPPL researchers and
dedicated run campaign

— MAST-U collaboration has started
— Other collaborations on both domestic and international devices
— Collaboration activities contribute to answering key science questions

» Analysis of NSTX-U results ongoing: EP/AE physics, divertor
turbulence, transport and confinement, EF/stability to address milestones
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NSTX-U Research Goals will be accomplished by
several means

» Research Milestones (R-): formal list of NSTX-U deliverables

— Primarily carried out by PPPL researchers directly funded by
NSTX-U, ITER & Tokamak and/or Theory Divisions

« Research Activities (RA-): research that can benefit both ST-
and non-ST devices
— Work carried out by both PPPL and non-PPPL researchers

— Non-PPPL researcher work supported by transferred and/or
separate funding on other devices

— Means by which collaborators who worked on NSTX-U can keep in
touch and communicate ongoing work
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NSTX-U Research Milestones and Activities cover the full
range of science topics

» JRT18: Test predictive models of fast ion transport by multiple AEs

» R18-1: Develop/benchmark reduced heat flux and thermo-mechanical models for PFCs/ monitoring
» R18-2: Develop simulation framework for ST breakdown and current ramp-up

« R18-3: Validate/further develop reduced models for thermal e~ transport in STs

» R18-4: Optimize energetic particle distribution function for improved plasma performance

+ RA18-1: Validation of non-axisymmetric plasma response modeling

« RA18-2: Develop self consistent calculation of fast wave and energetic ion interactions

 RA18-3: Assess transient CHI startup potential for ST current initiation

« R19-1: Assess H-mode energy confinement and pedestal with higher B+, |, and NB heating power

« R19-2: Demonstrate optimized ramp-up scenarios in STs

» R19-3: Validate tearing mode physics for tearing avoidance in high performance scenarios

 R19-4: Assess effects of NB injection parameters on fast ion distribution and NB-driven current profile
+ RA19-1: Expand disruption prediction and avoidance capability for tokamaks

+ RA19-2: Assess importance of H-species in HHFW-heated NSTX-U full-field plasmas
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DIlI-D collaboration: two types of opportunities

« >2 3 PPPL FTE researchers funded directly through ITER and
Tokamak (I&T) Division to work with PPPL Team on DIII-D

— NSTX-U researchers contributed to 2017 I&T Notable Outcome on
modeling EP losses due to AEs

* Two week (8 days) dedicated campaign in 2017

— Proposals submitted and prioritized based on near-term NSTX-U goals
(including JRT), well-defined ideas that require minimal development time,
early career considerations

— Selections finalized after discussions with GA, FFCC in December 2016
— Approximately 50% of run time allocated to non-PPPL researchers
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MAST-U collaboration has started

ST devices have common goals

— Robust, flexible startup with active
feedback assist 10

— Broad j(r)/low 4 to increase K, avoid low-q,
MHD activity

— Minimize flux consumption
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Additional collaborations being developed in areas of transport, EP and core MHD
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Researchers are actively engaging in other domestic and
iInternational collaborations during Recovery

— EAST (China): edge physics, plasma materials interactions, effect of
lithium

— ASDEX-U, W7-X (Germany): wall conditioning using boron powder

— QUEST (Japan): Full non-inductive operation (CHI, ECCD)

— HL-2A (China): LH stabilization of ELMs, effects of NTMs on fast ions

— KSTAR (S. Korea): Core MHD, rotation physics, plasma control

— LAPD: RF coupling and heating physics
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How do collaborations address key questions?

Science Group

and presenter Key research questions: First 1-3 years, 3-5 years, 5-10 years
Sl o Can a high-performance ST have 100% non-inductive current, equilibrated?

D. Battaglia

Core  Does “ST” confinement scaling persist to (3x to 6x) lower collisionality n*?
Wreicattiasy o Can Alfvénic instabilities be modelled/understood, manipulated to control core?

M. Podesta

=/ -+ Can passive & active RWM stabilization be achieved at low n* and sustained?
* How will pedestal transport & turbulence vary vs lower n*, higher |, Li coatings
302333"3/  How does heat-flux width scale? Can n, control be sustained? (see backup)
e « Can heat fluxes be mitigated consistent with high core performance?
« Can liquid metals provide a solution for higher confinement, power exhaust?
-l ¢ Can high-harmonic fast-waves provide reliable heating and CD in H-mode?

R. Perkins

R. Raman » Can NSTX-U demonstrate solenoidal-free initiation, ramp-up, and flat-top?
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How do collaborations address key questions?

Science Group

and presenter Key research questions: First 1-3 years, 3-5 years, 5-10 years
Sl o Can a high-performance ST have 100% non-inductive current, equilibrated?

D. Battaglia

Core  Does “ST” confinement scaling persist to (3x to 6x) lower collisionality n*?
W. Guttenfeider 8 Can Alfvénic instabilities be modelled/understood, manipulated to control core?
=L/ < Canpassive & active RWM stabilization be achieved at low n* and sustained?
 How will pedestal transport & turbulence vary vs lower n*, higher |, Li coatings
=GR - How does heat-flux width scale? Can n, control be sustained?

A. Diallo
M. Reinke

i « Can heat fluxes be mitigated consistent with high core performance?
« Can liquid metals provide a solution for higher confinement, power exhaust?
-0 Can high-harmonic fast-waves provide reliable heating and CD in H-mode?

R. Perkins

R. Raman « Can NSTX-U demonstrate solenoidal-free initiation, ramp-up, and flat-top?
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Rotation and stored energy control necessary to achieve target
high performance plasmas

e Control algorithms S os Stored energy 0 Toroidal velocity
developed for NSTX-U R 5 . [ [
’ 3 o] £
adapted and 5 0 : off | < 60 : :
. 8 —— Measured : = a0 : :
implemented on DIII-D 5 o — Taroet_| | T : :
. o . N " 1 2 3 4 5 6 5 1 2 3 4 5 6
« Constrained optimization Time [s] Time [s]
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D. Boyer, PPPL Time [s] Time [s]
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Disruption Event Characterization and Forecasting (DECAF)
development for maintenance of high-performance plasmas

Automated disruption event chain analysis to cue avoidance systems (RA19-1)
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S. Sabbagh, J. Berkery, Columbia U.

Physics-based disruption
forecasting models (e.g.,
reduced kinetic RWM model:
Berkery, 2017)

Prediction quantitatively
compared to experiment (7%
false positive)

Collaborative (inter)national
multi-device studies starting (incl.
NSTX/-U, KSTAR, DIII-D, TCV)
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Core low-k turbulence reduced as collisionality decreases in
Advanced Inductive Hybrid Scenario at ST-relevant qq;

« Experiment on DIII-D designed to understand improvement of confinement with
decreasing collisionality in STs as well as at higher aspect ratio (R18-3, 19-1)

« DBS measurement indicates reduction of turbulence with increasing B; (decreasing
collisionality), consistent with energy confinement improvement

« E-S/E-M gyrokinetic simulations (flux tube & global) to understand cause of trend
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Y. Ren, PPPL
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What is the influence of electromagnetic microturbulence at
high 7

« Enhanced coupling to 8B at increasing f is stabilizing to ITG/TEM (R19-3, 19-1)
* Measured simultaneous dn (DBS) & 6B (CPS) as far in as r~0.4 in QH-modes on DIII-D
» Use results to validate electromagnetic gyrokinetic simulations

« Ratio of CPS/DBS , x10° DBS,p05 x108 CPS,p0.5
amplitudes ~3B/dn increases . };ggg}, 2000 Qig ;f;, '
with 3, expected from theory Tl
~ 06 F :
: : ! :
* Requires ray tracing, 0.4 f l .
gyrokinetic simulations + 02| ] oL ]
synthetic diagnostics for JE DN Y S
validation (ongoing for IAEA -4000 -2000 O 2000 4000  -4000 -2000 O 2000 4000
FEC 2018) f (kHz) f (kHz)

W. Guttenfelder, PPPL

@DNSTX-U PAC-39, Collaborations, S. Kaye, 1/9/18 13



Collaborations on 3D MHD show importance of rotational and
Kinetic effects in identification and detection of MHD modes

« MARS-K shows rotational and drift kinetic effects 0.5
fundamentally change 3D plasma response and
RWM stability in high performance plasmas

— Predicted frequency response to 3D fields can be largely ;3"-0.5
different between fluid and kinetic simulations )

— RWNM stability inferred from kinetic Nyquist contour explains ‘;? 1
3D response in high B and low v* NSTX plasmas E_LS_

— Consistent with Berkery/Sabbagh results

— RA18-1 Z. Wang et al, NF 58 016015 (2018) 2

NSTX 124801 B\=4.98>B nowall

Kinetic Response
RWM Re(y)=-13.2s" (5
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* Advanced 3D MHD spectroscopy, based on Nyquist method, has been used to
identify and detect MHD stability and multi-mode response on EAST and DIII-D

— Tested in 2017 and 2018 EAST and DIlI-D experimental campaign

1 1.

5

— First time successfully extracted experimental transfer function between applied field and plasma response
— This is one method that can be used to develop real-time global MHD stability monitor and improve RWM

feedback controller in NSTX-U and other devices
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Divertor detachment is one method for heat flux mitigation

 Divertor detachment studied in highly-shaped
NSTX/NSTX-U similar plasmas on DIII-D
(JRT17)

« NSTX demonstrated partial
detachment sensitivity on

— Gas injection location )
— Divertor flux expansion
— Divertor separatrix angle with PFCs

* FY2017 result in DIII-D: little change in
divertor detachment characteristics with gas
injection location (midplane, divertor shelf,
divertor baffle)

« Analysis to understand differences ongoing
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UCLA's LArge Plasma Device (LAPD) serves as a “test stand” to
understand HHFW losses and to improve NSTX-U heating performance

On NSTX, there is a significant loss of HHFW  LAPD offers opportunity to study these
power to the SOL. What is the reason for this? topics in detail

— Can far-field rectification dissipate substantial — Flexible setup & diagnostic accessibility
HHFW power? — Detailed 2D and 3D data sets, which
— Is this related to the misalignment of the are not obtainable on major tokamaks
current straps with B;gr in NSTX(-U)? due to time and access constraints
— Plasma parameters are similar to NSTX
Preliminary result: SOL Plasma Potential (V)
— The amplitude of potential changes significantly as 6 LT T, :9159
antenna is tilted relative to field
— LAPD has identified regions of enhanced potential ' ' ' '
on side of single-strap antenna

— Studying reason for change in potential & impact
of tilt effect in the far-field [analog to divertor in B Ch tilt 2SIEom -1 Gy 14°
NSTX(-U)]

R. Perkins, PPPL
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Summary

» Results from collaborations (active and planned) address
NSTX-U research elements and will provide guidance for future
operational scenarios

» Opportunities for non-PPPL researchers to collaborate exist
(or have been proposed) to provide a means to maintain
research activities, and to communicate results with the NSTX-
U Team

* Non-PPPL researchers remain interested in NSTX-U, and
we look forward to them bringing their full research
expertise back to NSTX-U when operations resume

@NSTX-U PAC-39, Collaborations, S. Kaye, 1/9/18
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Back-up
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Dedicated campaign experiment on DIII-D investigates stability
and f & n scaling of compressional Alfven eigenmodes on DIII-D

* Observed CAEs consistent with many aspects of
theory:

— Frequency dependent on beam injection geometry
— Beam density threshold observed e

= Beam current ramped at constant voltage (variable constant V.
perveance beams

— Observed By & n, thresholds consistent with

2300 2400 2500
time (ms)

o *Beam density

resonance condifion — fincreases with V,as " {current) thresho‘
expected . i 3
* Preliminary 2-point n results g O .
— n < 0 consistent with Doppler shifted cyclotron .
resonance Beom Current (A)

— fincreases as |n| decreases

 Addresses NSTX-U JRT18, R18-4, 19-4

— Results will be used to validate HYM linear and
non-linear simulations
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S. Tang, UCLA
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SPI experiments carried out to determine whether pellets can
penetrate high temperature edge

 Disruption mitigation experiment carried out in DIlI-D with low & high-power (L-
& H-mode)

* Relevance for ITER, Electromagnetic Particle Injector concept for NSTX-U
» Results support continued EPI development for higher velocity pellet

2

FPlasma Current (MA) ]

3 1.6 MA 172280?
1E 3
of . . :
2t Line averaged density 3
4 £ x1e14 m/cm”3
2 - WMHD (MJ) 3
oF— bl lc ;

0 1 2 3

Time (s) R. Raman, U. Washington
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KSTAR 3D physics collaboration demonstrated remarkable
predictability of ELM suppression window in n=1 RMP coil space

* Used resonant metrics in linear 3D MHD with edge vs. core decoupling
 Fully identified 3-rows KSTAR RMP coil operating windows for ELM suppression
+ Validated its predictability with new RMPs, including dynamically deployed RMP (e)

Predicted stability diagram (1,,,®)

with a special choice of |;=Ig=5kA
(a) I=1g=5kA, $ry=0ms=90°

(a-e) Experimental RMP traces
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+: Experimental ELM suppression threshold

(J.-K. Park et al., under
review in Nature Physics
(2017, EPS Invited 2018)
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Effect of LHCD on edge plasma stability studied in HL-2A L-mode
plasmas

« ELM control important for operation Shot 31573
of future fusion devices (e.g., ITER) r2e34 o (kA ——
— Widely believed ELMs due to peeling- 784851 |

ballooning modes ij;
— EAST reported mitigation of ELMs by LH -
(Chen, NF 2015) '
0.000r I\Nithout LHW With |.‘.HW
0.840r ‘ | i
* Clear modification of ELM behavior 0420 sl e i o
. 0.000F Ak
by LH observed in HL-2A e
— Analysis ongoing to understand whether (k\,\ifo' """"""
modification due to heating or current drive 250 | /LHW ]
— Understanding of factors influencing > B0 1Y o
pedestal structure (JRT19, R19-1) P, w~760kW ¥ Ren PPPL
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DIlI-D collaboration through national campaign shows first
systematic negative B+ scaling for n=2 error field thresholds

* n=2 locking threshold decreases MP2017-08-06  (ne) =2.3 x 10" em~2 Ty = 0.11 Nom
strongly with increasing B+ in 22 DIII-D T cenie Lioe
ShOtS 10-2 L O C-cgils, Ohmic |
— Similar decrease well-known for n=1 EF S » [ ote. Lamode

* Suggests common mechanisms for R~
resonant locking of n=1 and n=2 g - o =®

s ’ .y = ;

* Future ST and ITER will be more 2 0| T .
sensitive to field errors due to higher 2 :
B;(R19-3)

. 0?8 1 .IO 1 .I2 1 .I4 1 .I6 1 .I8 2.I0 2.12 2.4

° Experlment also showed a small Toroidal field [T]
torque (as in L-mode) can increase EF
thf@ShOld SUbStantia”y C. Myers (PPPL) and DIII-D research team

PRL (2017 submitted)
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Expanded KSTAR collaborative stability/transport research
complements NSTX/-U research and available database

“« Significant motivation: Understand influence of aspect ratio (A)

— Equilibrium, stability, transport physics all influenced by A Sabbagh et al.,
— Leverage large aspect ratio difference: KSTAR = 3.5, NSTX(-U) > 1.3 e Columbia U.
2.5
0 Significant progress (all shown at APS DPP ’17) _ Wooorer
0 Improvements and new capabilities enabling disruption gt %";f:;n_
characterization / forecasting research plan in long pulse, high b £ inductive
® More detailed equilibrium reconstruction: kinetic reconstructions with MSE/; 05

02 04 06 08

® TRANSP analysis of KSTAR high beta and high non-inductive plasmas
II’tor

® Stability codes (kinetic MHD, NTM, kink/ballooning/RWM) initially tested on
KSTAR kinetic equilibria; compare dominant stabilization physics to NSTX Meas(ured VNV o;ofiles |
® Significant co-l, plasma rotation+ shear generated for the first time by NTV =

30 —
O Improvements/support to key diagnostics \ =25
® C-Mod MSE background polychrometer sent to KSTAR (10 channels), Ef‘;
building 15 more channels to support 25 total channels (2018) =10
a Active control of dynamic error fields and global MHD instability o L st B e
® Created/implemented critical sensor DC and AC compensation for KSTAR - s

RWM PID control (initial control testing 2018 — compare to NSTX results) 7 "R m? 23
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Lithium shown to control ELMs on EAST

Recycling and ELMs

progressively reduced with
constant Li injection rate

Vo
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R. Maingi, Nucl. Fusion (2017) submitted 2 o sea se8 -
J. Canik, IEEE Trans. Plasma Sci. (2017) submitted ' ' ' ' '
R. Maingi, PPPL
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Powder droppers installed on ASDEX-U and W7-X

o

IP34828/AL

4
®

« ASDEX-U

o /| #34826
— Impurity Powder dropper -,  Magnetic Perturbatio
installed with BN and B o | | P

©
T

powder. Initial
experiments on real time
wall conditioning
promising

« W7X

— Compact Injector being
designed to go on Multi-

ELM suppression with MP

purpose probe for in- : 1 with
vessel B,C powder achieved after B injection
in AUG

Injection R. Maingi, PPPL
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Flowing liquid lithium limiter collaboration: several
. different limiter designs deployed
« Gen. 1: Made at PPPL —&,
- Cu heat sink; SS coating
- Inserted at EAST midplane on MAPES system
— Compatible with H-mode

« Gen. 2: Improved distributor, thicker SS
coating, and 2 ExB pumps

— Enabled H-mode with transiently high H98 ~ 2

« Gen. 3: solid Mo plate, no SS coating

- Two version: flat (PPPL) & corrugated for
TeMHD flow drive (UIUC)

- Experiments in 2018

J.Ren et al., RSI. 86 (2015) 023504; J.S. Hu et al. NF 56 (2016) 046011
G.Z. Zuo et al. NF 57 (2017) 046017; G.Z. Zuo et al. RSI 88 (2017) 123506

B,

Feed pipe

Distributor box i

\ Li outflow from channels

Distributor channels
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Major goal of the QUEST program is to generate steady-state
fully non-inductive plasmas

« Coaxial Helicity Injection (CHI)

research on QUEST supports QUEST
NSTX-U longer-term goal of non- Spherical
inductive startup (R18-2, RA18-3) Tokamak
« The QUEST CHI system has been
commissioned by U. Washington
» Steady progress increasing ol msoer Lo croksal doren 1o
. — Injector S B
current using CHI S -cureni™\ \\ 17
— Increased peak toroidal current from 29 %[ | ‘ 1% =
kA (Dec. 2016) to 48 kA 4 P i 13
. . 5 i T Current m‘ultiplication f:actor =11
— TSC simulations of CHI started K : T o ns o
R. Raman, U. Wash., M. Ono, PPPL [s]
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ECCD being used on QUEST to assist current ramp-up

28 GHz

. gyrotron I e 7
being used similar to . SN —
one proposed for i g b
NSTX-U oy — =

- Generated up to 85 20 e o
kA with 230 kW (W) ik

» Kinetic modeling of % owgeE‘TreE:fﬁ?sg:ion 7
energetic electrons n il
and current drive “"“SJWM*,l —
underway %% Tme ) 38

G. Taylor, N. Bertelli, PPPL
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