

NSTX-U is sponsored by the U.S. Department of Energy Office of Science Fusion Energy Sciences

Solenoid-Free Plasma Start-Up & Ramp-Up

¹R. Raman, ²D. Mueller, ²M. Ono, ²F. Poli, ²F. Ebrahimi 1 University of Washington 2 Princeton Plasma Physics Laboratory

> NSTX-U PAC-39 Princeton Plasma Physics Laboratory January 9-10, 2018

Solenoid-free Start-up and Ramp-up are Critical Issues for Compact ST and Tokamak-based Reactors

- ST has been addressing critical issue of solenoid-free start-up
 - A compact ST has little space for a central solenoid
 - Solenoid-free start-up is also attractive for tokamak designs
- Maximizing solenoid-free start-up currents reduces reliance on less developed non inductive current ramp-up scenarios
- Few MA start-up current is projected for reactors
 - Higher currents may be feasible

NBI - ~ 10 MW NBI

Solenoid-Free Start-Up / Ramp-Up Present Plans

- NSTX-U can start with Ramp-Up studies using inductively generated targets with HHFW & NBI, as in original plan.
 - Eventual goal is to transfer this capability to CHI/LHI/ECH started targets when one or more of these are implemented on NSTX-U
- NSTX-U SFPS experiments deferred in the near term; progress will be made through collaborations and theory/modeling:
 - Supporting ECH / EBW start-up studies being conducted on QUEST
 - Pegasus has been investigating Local Helicity Injection
 - Supporting CHI work being conducted on QUEST in Japan

On NSTX-U, Non-inductive Ramp-Up from ~0.4MA to ~1MA Projected to be Possible With New CS + More Tangential 2nd NBI

High Current Helicity Injection Start-Up can Reduce Reliance on Less Understood Current Ramp-Scenarios

Method	Device	Current Scaling	Present Demonstrations
ECH / EBW	MAST QUEST	Current scaling not understood	<100 kA on QUEST & MAST (Not coupled to induction)
Local Helicity Injection (LHI) [Small area electrodes / high voltage]	Pegasus	Dynamo Current Drive models need development $\dot{K} - 2V - B - A$	200 kA on Pegasus (Coupled to induction)
Steady State CHI [Large area electrodes / lower voltage]	HIT-II HIST	$\Lambda_{inj} - 2 V_{inj} D_N \Lambda_{inj}$ Dynamo Current Drive models need development	400 kA on NSTX 200 kA on HIT-II (Not coupled to induction)
Transient CHI [Short 2-3ms pulse discharge]	HIT-II NSTX QUEST	Scaling to large devices well understood	200kA on NSTX 100 kA on HIT-II Demonstrated flux saving on NSTX by ramping to 1MA with inductive drive

QUEST Has an On-Going Active Program on ECH NSTX-U is Contributing via. Theory and Diagnostic Support

- Current efficiency increased from 66kA/270kW to 85kA/230kW using new wave guides and polarizer
- Further polarizer improvements should enable higher power (available up to 400 kW) operations.
- Model validation of non-thermal electron tail created by the ECCD being carried out by PPPL researchers (Bertelli, Poli, Taylor)
- X-ray camera from PPPL together with modeling to improve understanding of physics of ECCD (Delgado-Aparicio)

28GHz-34.8GHz Two Frequency Gyrotron Development by University of Tsukuba, Japan

28 GHz 2 MW Dual-frequency Gyrotron								
Frequency	28 GHz		34.77 GHz	ł				
Output Power	2 MW	0.4 MW	1 MW					
Pulse Width	3 s	CW	3 s					
Output Efficiency	50% (with CPD)						
Beam Voltage	80 kV	70 kV	80 kV					
Beam Current	70 A	20 A	40 A					
MIG		triode						
Cavity mode	TE _{8,5}		TE10,6					
Output mode	Gaussi	an like	-					
Output Window	Sapph	ire Double	Disk					
Collector	Depre	ssed Colle	ctor					
	Sweep	ing coils						

Collector Coils Collector Double Disk Window M4 a. NF 2017 Radiator Cavity MIG

- CPD (Cathode Potential Depressor) increased the tube efficiency to ~ 50%
- Double disk window developed for long-pulse/steady-state operations
- High power tube should be technically available for NSTX-U within two years

Local Helicity Injection (LHI) Providing High-I_p Start-Up being Developed on PEGASUS ST (Univ. of Wisconsin)

- LHI provides non-solenoidal startup and sustainment:
 - $I_p \le 0.2MA \text{ to date (with less than 8 kA of injected current)}$
 - Inboard and outboard injection location investigated
- LHI also enables access to interesting physics regimes:
 - The current drive mechanism does appear to fundamentally be due to edge localized reconnection activity
 - Strong edge drive provides access to low l_i and very high β_T plasmas at relatively high l_p discharges at very low B_T

J.A. Reusch, et. al, PoP (submitted)

LHI Injector Geometries Vary Dominant Drive on PEGASUS

Transient CHI: High Fraction of Open to Closed Flux Conversion in NIMROD Simulations & in Experiments

- Injector flux shaping and injector current ramp-down causes open flux to form closed flux surfaces (like in a soap bubble)
- Promising PoP level tests on NSTX-U motivated us (during the NSTX-U construction period) to examine and develop CHI implementation concepts for a reactor (R. Raman, et al., Fus. Sci. Technol. 68, 674 (2015))
- Encouraged QUEST to implement & test reactor-relevant CHI capability
- Significantly ramped up computational modeling work to understand CHI scaling
- Theory and NSTX-U/HIT-II Experimental work has resulted in simple scaling relation for transient CHI to project to reactor scale devices (I_P ∝ Injected flux)

1 ms

2.5 ms

NSTX

F. Ebrahimi, PPPL

⁹

QUEST (in Japan) is Developing Reactor-Relevant CHI Configuration & Will Test ECH Heating of a Transient CHI Plasma

- In reactor concept insulator can be shielded from neutrons
- Insulator not part of vacuum boundary as on NSTX
 - Needs experimental test / verification

CHI system on QUEST is similar in concept to the one planned for NSTX-U

QUEST CHI is a NSTX-U CHI Team Led Effort

Transient CHI Discharges Successfully Established in QUEST

ECH heating to be tested during 2018

PAC39, SFPS/Ramp-Up, Raman, 9Jan2018

Solenoid-Free Start-Up / Ramp-Up NSTX-U Plans Utilize Multiple Facilities

- NSTX-U Ramp-Up studies will continue using inductively generated targets with HHFW & NBI, as in original plan.
- NSTX-U solenoid-free start-up activities will be conducted in other ST facilities in the near term:
 - Supporting CHI work being conducted on QUEST in Japan
 - Supporting ECH / EBW start-up studies being conducted on QUEST
 - Pegasus is studying LHI
- Preparation toward NSTX-U CDRs:
 - NSTX-U ~ 1.5 MW, 28 GHz gyrotron CDR completed
 - NSTX-U reactor-relevant CHI CDR to be ready in ~ 3 years via QUEST and other experiments/modeling

Back-Up Slides

Transient CHI Start-Up

CHI start-up to ~0.4MA is projected for NSTX-U, and is projected to scale favorably to next-step STs

- Conceptual concept for "QUEST– like" CHI electrode in NSTX-U upper divertor
- Utilizes full injector flux capability in NSTX-U
 - I_p > 400 kA
 - 1MA Start-up potential

	Parameters	NSTX	NSTX-U	ST-FNSF	ST Pilot Plant
	Aspect ratio: A	1.30	1.50	1.50	1.70
	Elongation: κ	2.6	2.8	3.1	3.3
	Major radius: R ₀ [m]	0.86	0.93	1.2	2.2
	Minor radius: a [m]	0.66	0.62	0.80	1.29
	Toroidal field at R ₀ : B _T [T]	0.55	1	2.2	2.4
	TF rod current: I _{TF} [MA]	2.4	4.7	13.2	26.4
	Toroidal flux: Φ _T [Wb]	2.5	3.9	15.8	45.7
	Reference maximum sustained plasma current: I _{PS} [MA]	1	2	10	18
	Start-up plasma normalized internal inductance: I _i	0.35	0.35	0.35	0.35
	Injector flux footprint: d [m]	0.6	0.56	0.73	1.17
	Injector flux for projecting start-up current: ψ_{inj} [Wb]	0.047	0.10	0.66	2.18
	Bubble-burst current: Ibb [kA]	3.3	9.0	79	165
	Injector current: I _{ini} [kA]	4.0	10.8	95	198
	Start-up plasma flux: ψ _p [Wb]	0.04	0.08	0.53	1.74
	Start-up plasma current achieved or projected: I _P [MA]	0.20	0.40	2.00	3.60
	Current multiplication: I _P / I _{inj}	50	37	21	18
	Multiplication limit: Φ_T / ψ_{inj}	53	38	24	21
	Injector current density [kA/m ²]	4.9	12	63	39

QUEST ECH current start-up generates forward fast electrons NSTX-U plans to install x-ray camera to elucidate ECCD physics

- NSTX-U multi-energy soft x-ray camera to be used to measure the QUEST ECH induced high energy electrons with high spatial and time resolutions.
- Developing a new synthetic diagnostic tool for multi-energy soft x-ray camera with UT.
- On-going modeling with GENRAY and CQL3D for ECH fast electron generations.

QUEST New ECH Beam Steering, Focusing and Polarization Capability Enabled High Current Access and Physics Study

- Steering and focusing mirror launcher system together with quasi-optic waveguide enables incident polarization, $N_{//}$, and deposition profile scanning
- ECH power is presently limited by arcing in the quasi-optic waveguide. Improvements are being made for next campaign for higher power (and higher current) operations.
- Current ramp-up and sustainment mechanisms will be also investigated via parameter scanning.