National Spherical Torus eXperiment Upgrade

NSTX-U Research Milestone and Research Activities Update and Plans

NSTX-U PAC-40 – Sept. 11, 2019

D.J. Battaglia On behalf of the NSTX-U Research Team

NSTX-U PAC-40 Charge

- The NSTX-U Research Program requests advice from PAC-40 in three areas:
 - Please comment on the quality and importance of recent research results, including collaborative activities, and how they advanced the NSTX-U Mission and Milestones
 - How well the FY20 and 21 Research Milestones <u>address issues critical to the ST</u> <u>and fusion</u> as well as the <u>preparation for operations</u> of NSTX-U, and the <u>suitability of expertise and resources</u> needed to achieve these milestones successfully.
 - The role, uniqueness and importance of NSTX-U in developing a national fusion strategy and to contribute to the design of a next-step tokamak device. In particular, is the proposed R&D program well-positioned to close gaps needed for a compact pilot plant as outlined in the recent NAS and FESAC TEC studies?

NSTX-U Research Milestones address key scientific missions that will be initiated upon restart

- FY19/20 Research Milestones focused on modeling and data analysis
 - At this time, Milestones are led by PPPL scientific staff while "Research Activities" can be led by NSTX-U collaborators
 - Talk by Ahmed will highlight recent research supporting NSTX-U science program not captured in FY19 Research Milestones and Activities
- FY21/22 Research Milestones target operations on NSTX-U
 - Milestones will benefit from reconstitution of NSTX-U research team
 - Some elements can be performed through collaborations on other devices
- Achievement of Research Milestones will benefit from timely increase in scientific resources
 - Necessary to balance support of Recovery Project with progress on scientific mission

- Understand mechanisms governing the pedestal structure at low-A
- Advance core transport models applicable to high- β and low- v^*
- Develop predictive models to understand and optimize fast-ion transport, instabilities and current drive
- Enable low-disruptivity scenarios at high β_N and develop tools for disruption avoidance and mitigation
- Develop and optimize the real-time control and scenario capabilities needed to sustain high-non-inductive fraction discharges

- Understand mechanisms governing the pedestal structure at low-A
- Advance core transport models applicable to high- β and low- v^*
- Develop predictive models to understand and optimize fast-ion transport, instabilities and current drive
- Enable low-disruptivity scenarios at high β_N and develop tools for disruption avoidance and mitigation
- Develop and optimize the real-time control and scenario capabilities needed to sustain high-non-inductive fraction discharges

NSTX-U data critical for developing a predictive pedestal model that spans low-A to high-A

- Pedestal width at low-A scales more strongly with β_{θ} compared to conventional-A
 - Width is enhanced relative to prediction assuming KBM pedestal transport
- JRT and milestones advance understanding of pedestal structure at low-A
 - JRT-19: Identify role of fueling in pedestal structure
 - R20-1: Apply gyrokinetic and neoclassical modeling to advance understanding of pedestal transport at low-A
 - R21-1: Characterize pedestal at larger I_p , B_T , A and lower v^* compared to NSTX
 - Elements of milestone may be deferred to FY22

JRT19: Understand role of neutral fueling and transport in determining pedestal structure

- Neutral density (n_D) measurement developed and validated via neutral transport simulations
 - n_D profile inferred from from ENDD and GPI diagnostics
 - Automated workflow for DEGAS 2 simulations developed to validate inferred n_D profile
- Measurements (ENDD, GPI) and calculations (DEGAS2) support ongoing detailed analysis of particle fueling and transport mechanisms

R20-1: Pedestal transport simulation and modeling **R21-1**: Characterize pedestal at higher field, lower- v^*

- Extend previous linear gyrokinetic analysis demonstrating TEM and ETG pedestal transport
 - Begin work with non-linear gyrokinetic analysis relevant for the pedestal (CGYRO, XGC1, GS2)
 - Revisit neoclassical analysis of ion dynamics in setting pedestal structure (NEO, XGCa)
- FY21/22-1 milestone: characterize the pedestal structure and instabilities
 - Collaborate with MAST-U in experimental analysis and simulations supporting pedestal structure and transport research
 - Commissioning profile and turbulence diagnostics on NSTX-U

- Understand mechanisms governing the pedestal structure at low-A
- Advance core transport models applicable to high-eta and low- v^*
- Develop predictive models to understand and optimize fast-ion transport, instabilities and current drive
- Enable low-disruptivity scenarios at high β_N and develop tools for disruption avoidance and mitigation
- Develop and optimize the real-time control and scenario capabilities needed to sustain high-non-inductive fraction discharges

NSTX-U critical for characterizing confinement at low-A and high β as ν^* is reduced

- Next-step devices benefit from a predictive transport model valid across range of β , ν
 - NSTX-U accesses E-M turbulence regimes at high- β
- Milestones aim to develop and validate core transport tools for NSTX-U regimes
 - R19-1: Validate transport models for high- β ST Hmode plasmas and assess the importance of multiscale effects in NSTX-U turbulent transport
 - JRT20: Validation of impurity transport models
 - RA20-1: Global EM simulations at high- β
 - R21-1: Assess H-mode confinement on NSTX-U and/or MAST-U
 - Elements of milestone may be deferred to FY22

R19-1: Validate transport models for high- β ST H-mode plasmas; assess importance of multi-scale effects

- Linear CGYRO analysis identifies unstable MTM & TEM outside r/a≥0.6 (top of pedestal)
 - Reduced Rafiq MTM model (part of Multi-mode transport model) predicts outer T_e profile
- Central profiles predicted to be very near or above threshold for energetic particle mode (EPM)
 - EPM threshold depends on total pressure (thermal + fast ion) gradient
 - Global, low-n ballooning modes also predicted unstable (M3D-C1)
- Developing hypothesis: central T_e ultimately clamped by pressure limit
 - GAE/CAE modes also postulated to influence core T_e

R19-1: Electron-scale (ETG) turbulence can account for anomalous electron loss in lower- β NSTX H-mode

- Comprehensive validation effort suggests e-scale (ETG) accounts for anomalous e-transport
 - Utilized high-k turbulence measurements + novel synthetic diagnostic to constrain simulation results using numerous sensitivity scans
 - Small variation in geometry (s and q) improves match to high-k fluctuation spectra
- Single-scale conditions identified in an NSTX Hmode at intermediate β
 - Similar to multiscale effect found in C-Mod for conditions with strong ETG drive + near-marginal ionscale stability (Howard, NF 2016)

Ruiz-Ruiz, MIT Ph.D. (2019); PPCF (2019, accepted), APS invited (2019)

NSTX-U

RA20-2: Global E-M simulations in high- β **R21-1:** Assess confinement at higher field, lower- ν^*

- Benchmark global electromagnetic simulation capability of GTS using high- β NSTX discharges
 - Assess single-n, linear calculations for large range of modes, from low-n (shear Alfven, tearing modes) to drift-wave instabilities (KBM, MTM)
 - Extension to non-linear calculations and/or multiple-n
- FY21/22-1 milestone would characterize core confinement at lower v*
 - NSTX-U: $B_T \simeq 0.85$ T, $I_p \simeq 1.4$ MA at end of first year of ops: $v^* \simeq$ factor 1.5-3 lower than NSTX

NBI-heated NSTX H-mode plasma

Y. Ren et al., PoP 2015

NSTX-U

- Understand mechanisms governing the pedestal structure at low-A
- Advance core transport models applicable to high- β and low- v^*
- Develop predictive models to understand and optimize fast-ion transport, instabilities and current drive
- Enable low-disruptivity scenarios at high β_N and develop tools for disruption avoidance and mitigation
- Develop and optimize the real-time control and scenario capabilities needed to sustain high-non-inductive fraction discharges

NSTX-U can access unique fast-ion regimes and instabilities that directly inform burning plasma scenarios and optimization

- Explore impact and control of fast-ion heating, current drive and instabilities in burning-plasma regimes
 - NSTX-U has very flexible NBI system for modifying the fast-ion phase space
- Milestones aim to develop a validated EP transport models for predictive modeling

~ (EP-instability drive)/(EP-instability damping)

- R19-4: Assess energetic particle transport by sub-TAE instabilities and develop reduced EP transport modeling tools
- R20-4: Assess the effects of NBI parameters on the fast ion distribution function and NBI driven current profile
- R21-3: Optimization of NBI mix for AE mitigated scenarios
 - Elements of milestone may be deferred to FY22

R19-4: Assess energetic particle transport by sub-TAE instabilities and develop reduced EP transport modeling tools

- 'Kick model' in TRANSP extended from high-f (AE) version to include EP transport by low-f modes
 - NTMs, kinks, fishbones, and sawteeth coexist with AEs
 - Low-f modes: fewer, larger-amplitude resonances with EPs than AEs may lead to non-diffusive transport D. Kim et al., NF (2019)
 - Extended kick model validated with NSTX-U data
 - Improves upon ad-hoc models already implemented in TRANSP
- Kick model with NTMs applied to DIII-D and NSTX
 - Use Mirnovs and USXR to infer NTM parameters to study impact of NTM on EP transport
 - Presently investigating impact of EPs on NTM trigger and saturation toward comprehensive NTM module in TRANSP

J.-H. Yang, APS-DPP 2019

R20-4: Fast ion distribution and NB current profile vs NBI param. **R21-3**: Optimization of NBI mix for AE mitigated scenarios

- Flexible NBI system on NSTX-U offers opportunity to optimize fast-ion distribution
 - Computational (HYM) and analytic models reproduce AE stabilization with tangential beam
 - Models identify regions of stability with regards to NBI parameters
- Validate models and optimize NBI parameters for stability and current drive

NSTX-U

- Utilize dataset and joint experiments with NSTX(-U), MAST(-U) and DIII-D
- FY21/22 milestone would test optimization from simulations
 - Complete experiments on MAST-U, DIII-D and NSTX-U (if operating)

J. Lestz APS invited 2019 E.V. Belova et al., PoP submitted

- Understand mechanisms governing the pedestal structure at low-A
- Advance core transport models applicable to high- β and low- v^*
- Develop predictive models to understand and optimize fast-ion transport, instabilities and current drive
- Enable low-disruptivity scenarios at high β_N and develop tools for disruption avoidance and mitigation
- Develop and optimize the real-time control and scenario capabilities needed to sustain high-non-inductive fraction discharges

High-performance scenarios on NSTX-U enabled by low-disruptivity at high $\beta_{\rm N}$

- Performance and scientific productivity strongly linked to ability to operate near stability boundaries with minimal disruptions
- Research Milestones and Activities

NSTX-U

- R19-3: Validate tearing mode physics for tearing avoidance in high-performance scenarios
- RA19-1: Expand disruption prediction and avoidance capability for tokamaks
- R20-3: Integrated disruption modeling for NSTX-U
- RA20-1: Application of expanded disruption prediction and avoidance capability for NSTX-U
- R21-4: Multi-mode correction of error fields in NSTX-U and tokamaks
 - Elements of milestone may be deferred to FY22

S.A. Sabbagh, APS DPP Invited (2018)

R19-3: Validate tearing mode physics for tearing avoidance in high-performance scenarios

- Full toroidal Δ' required to predict TM stability in high-β, ST geometry with 'extreme toroidicity'
- RDCON and STRIDE are reduced models that can calculate toroidal Δ'
 - Verified against full-MHD predictive simulations (M3D-C1) for DIII-D IBS cases
- RDCON used to map out stability space for NSTX-U
 - Being coupled to TRANSP through a reduced NTM model for scenario development
 - Also used for MTF stability calcs. (General Fusion)

Prediction of tearing modes in DIII-D IBS

n=1 Δ' (q=2) in NSTX-U 2MA, 1T, 12MW scenario

R20-3: Integrated Disruption Modeling for NSTX-U **R21-4**: Multi-mode correction of error fields

- Avoidance and mitigation of VDE would benefit from validated high-fidelity integrated modeling
 - Reduce stress and loads of VDE at high-fields
 - Model will integrate realistic resistive walls, impurity ionization, radiation and transport, 3D physics, and runaway electrons
 Ferraro, et al. Phys. Plasmas 23, 056114 (2016),

Ferraro et al Nucl. Fusion **59** 016001 (2019) Pfefferle et al Phys. Plasmas **25**, 056106 (2018)

- FY21/22: Develop EF mode-locking threshold scalings and correction strategies
 - Plasma response is sensitive function of dynamic nature of error fields
 Ferraro et al. NF 59 086021 (2019)
 - Validate island dynamics from simulations by hybrid and extended MHD codes against experiment

- Understand mechanisms governing the pedestal structure at low-A
- Advance core transport models applicable to high- β and low- v^*
- Develop predictive models to understand and optimize fast-ion transport, instabilities and current drive
- Enable low-disruptivity scenarios at high β_N and develop tools for disruption avoidance and mitigation
- Develop and optimize the real-time control and scenario capabilities needed to sustain high-non-inductive fraction discharges

NSTX-U will demonstrate non-inductive regimes at high $\beta_{\rm N}$ and large bootstrap fraction

- Compact Tokamak Fusion Power Plant concepts leverage large f_{BS}
 - NSTX-U has unique capabilities for demonstrating high f_{BS} at high β_{N}
- Milestones will accelerate progress toward non-inductive operation
 - R19-2: Develop optimized ramp-up scenarios in STs
 - R20-2: Scenario optimization algorithm development base on reduced models
 - R21-2: Commission operational tools that enable high-performance discharges on NSTX-U
 - Elements of milestone may be deferred to FY22

R19-2: Develop optimized ramp-up scenarios in spherical tokamaks

Boyer et al., Nuclear Fusion 2019 Ilhan et al., Fus. Eng. Des. 2019

- Simulation framework developed over FY18-19
 - Reduced models include development of neural net models for fast ions, kinetic profile shapes, and q-profile Vail et al., PPCF 2019

Commands Commands Control Algorithms Control Algorithms Conductor model Plasma model Signals Control Conductor model Plasma model Control

- Milestone work includes development of metrics for a successful startup
 - NSTX-U struggled to achieve passive vertical stability at target I_p ramp rate = 10 MA/s
 - Applied to MAST-U and NSTX-U to optimize startup

D. Battaglia et al., NF accepted

R20-2: Scenario optimization using reduced models **R21-2**: Commission operational tools

- Reduced models (such as NN models) enable rapid prediction of scenario evolution
 - Apply optimization algorithms to identify actuator trajectories to achieve performance goals
 - TRANSP simulations will be used to test and refine the optimized trajectories
 - Builds off of recent work using optimization algorithms to optimize NSTX-U ramp up

Wehner et al., Fusion Engineering and Design 2019

- FY21/22 Milestone commissions operational tools on NSTX-U and/or supports MAST-U operations
 - Ramp-up optimization, vertical stability at high elongation, RWM feedback, ELM pacing

NSTX-U Research Milestones address key scientific missions that will be initiated upon restart

- The FY19 Research Milestone and Activities address critical issues in fusion research and advances preparations for NSTX-U operations
- The FY20 Research Milestones and Activities build on this progress with efficient use of the resources presently available
- Rebuilding the NSTX-U research team well before operations is essential for preparing for operations and to rapidly advance progress with the FY21/22 milestones during the first physics campaign