## Experimental Research Operations: Status and Plans for FY'02

## M.G. Bell

**NSTX Experimental Research Operations Division** 

presented to the

NSTX PAC-12 January 10 – 11, 2002



## **Topics**

- Changes in device capabilities
  - Bakeout
  - Inner wall gas fuelling and plasma boronization
  - Real-time control
  - HHFW system
  - PF5 coil realignment
- Diagnostic status for FY'02
  - Relationship to FY'02 research milestones

#### **High-Temperature Bakeout Commissioned**

- New bakeout capability commissioned in December
  - Support structures for outer PFCs heated by high pressure helium
  - Tiles on outer divertor and stabilizer plates reached 320°C
  - Tiles on center column reached 330°C (resistive heating)
- Considerable acceleration of outgassing
- System operated well although some "teething problems" encountered
  - Heater power was limited: should be able to get 350°C next time
  - Small leaks opened on bakeout feed flanges during cooldown
    - Now sealed but need to assess permanent fix
- Subsequent GDC (D followed by He) removed adsorbed water
- Base pressure now lower than after previous bakeouts but not the best we have reached at the end of a run

#### Inner Wall Gas Fueling and Boronization

- Installed gas feed at midplane on centerstack
  - 3 mm feed tube routed behind inner divertor and center column tiles
  - Small (40 cm<sup>3</sup>) high-pressure (~100 kPa) plenum with fast valve
  - ~ 1 s risetime for VV pressure
- Plasma boronization
  - Introduced 10% D-TMB + 90% He into sequence of 900kA discharges
    - Reduced P<sub>rad</sub> and
    - H-mode transition in subsequent plasma
  - Procured pure D-TMB supply for tests in FY'02 run
    - Safety aspects reviewed and approved



#### **Upgrades for Real-Time Control**

- Problems with commercial vendor forced a redesign of data acquisition
- Use existing commercial modules for an interim upgrade while also developing a local solution for final capability
- 96 channels from Test Cell plus 64 channels from coil measurements
  - 5kHz/channel, 5µs latency, 12 bit precision
  - Devoted largely to magnetics data for equilibrium control
  - 18 channels available for other diagnostics (*e.g.* density analog)
- Tested rtEFIT in Plasma Control software with NSTX data [GA]
  - Code allows real-time algorithm switch to facilitate bringing online
- Incorporated control for Gas Injection System into real-time computer
  - Pulse-width modulation of piezo valves for better reproducibility
  - A big improvement over previous manual setup for GIS

## **High Harmonic Fast Wave Status**

- All 6 sources checked into dummy load after maintenance
- New master oscillator and antenna phase monitoring system
- Control of HHFW power, phase and timing from NSTX control room
- Preparing for operation with feedback to maintain programmed antenna phasing
  - Automatic compensation for loading changes
  - Closing of phase control loops will begin during operations
- Ready to begin work on HHFW pulse extension and current drive

#### **PF5 Coils Realigned to Reduce Field Errors**

- Installed adjustment turnbuckles to brackets on outer VV
  - n=1 amplitude reduced by factor of 12
  - n=2 amplitude increased slightly: 2 Gauss at plasma edge
  - n=3 is largest predicted amplitude: 4 Gauss at plasma edge



Calculations for I<sub>PF5</sub> = 10 kA

#### $\bigcirc$ NSTX –

#### Many Diagnostic Installations & Upgrades Completed

- Magnetic sensors: non-magnetic, more robust coils; 7 higher frequency coils; repaired flux loops
  - 10 MHz D/A available for subset of coils ( $\sim 2 \times f_{ci}$ )
- Neutral Particle Analyzer: horizontal and vertical scanning
- Thomson scattering: additional 10 spatial channels
- Reciprocating edge probe [UCSD]
- FIReTIP: 4 lines of sight (3 instrumented) [UCD]
- Divertor bolometer: 4 channel prototype thermal detectors
- Divertor fast camera [U. Hiroshima]
- Density interferometer (1mm chirped) [UCLA]
- USXR cameras: additional camera, upgraded detectors [JHU]
- GEM x-ray detector (2-D) [Frascati]
- Reflectometer: additional channel (correlation meas't) [UCLA]

## CHERS Upgrade and MSE Delayed to FY'03

- CHERS upgrade (51 ch.) and MSE share mounting for fiber optics
  - Fiber holder now in final fabrication
- CHERS fibers delivered (late) in September did not meet specification
  - Necessitated switch of vendor and local assembly into bundles
- MSE fibers delivered late; bundling is proceeding slowly
  - Expect to complete potting and polishing of  $76 \times 19$  fibers by end Feb.
- MSE filter prototype complete but high-birefringence material delayed
  - Vendor plant was shutdown over summer because of market collapse
- ♦ Need VV opening for 6 8 weeks to install, calibrate collection optics
- Aim to install after FY'02 run in preparation for FY'03 experiments
  - MSE requires several months after first light to complete calibration
  - Should then be able to back-calibrate data taken earlier in run

## **Diagnostic Complement for FY'02 Experiments**

#### **Confinement Studies**

Magnetics for equilibrium reconstruction Diamagnetic flux measurement Thomson scattering (20 ch., 60Hz) CHERS:  $T_i$  and  $v_{\phi}$  (17 ch.) Neutral particle analyzer (scanning) Density interferometer (1mm, single chord) FIReTIP interf'r/polarimeter (3 ch.) [UCD] VB detector (single chord) Midplane tangential bolometer array X-ray crystal spectrometer X-ray pulse height analyzer Electron Bernstein wave radiometer

#### **MHD/Fluctuations**

High-n and high-frequency Mirnov arrays Ultra-soft x-ray arrays (4) [JHU] 2-D x-ray detector (GEM) [Frascati] X-ray tangential pinhole camera Reflectometer [UCLA] Fast ion loss probe (non-resolving) Locked-mode detectors

#### Edge studies

Reciprocating Langmuir probe [UCSD] Fixed Langmuir probes (24) Edge fluctuation imaging [LANL] 1-D CCD H<sub> $\alpha$ </sub> cameras (divertor, midplane) [ORNL] 2-D divertor camera [U.Hiroshima] Divertor bolometer (4 ch.) IR cameras (30Hz) (2) Tile temperature thermocouple array Scrape-off layer reflectometer [ORNL]

NSTX -

#### Plasma Monitoring

Fast visible camera [LANL] VIPS-1: Visible survey spectrometer (reticon) VIPS-2: Visible survey spectrometer (CCD) SPRED: UV spectrometer GRITS: VUV spectrometer [JHU] Fission chamber neutron measurement Fast neutron measurement Visible filterscopes [ORNL] Wall coupon analysis [SNL]

# New Capabilities Contributing to FY'02 Goals

| Research Milestones                     | Operation & Diagnostic Capabilities             |
|-----------------------------------------|-------------------------------------------------|
| Study MHD modes without active feedback | High freq. Mirnov coils                         |
|                                         | <ul> <li>Locked mode coils</li> </ul>           |
|                                         | <ul> <li>USXR arrays</li> </ul>                 |
|                                         | Reflectometer                                   |
| Assess effects of high beta and flow on | • 20 ch. MPTS                                   |
| transport                               | • 17 ch. CHERS                                  |
|                                         | <ul> <li>FIReTIP (interferometry)</li> </ul>    |
|                                         | <ul> <li>Z<sub>eff</sub> profiles</li> </ul>    |
|                                         | <ul> <li>Edge rotation (proto.)</li> </ul>      |
| Test CHI startup                        | <ul> <li>Control system development</li> </ul>  |
|                                         | <ul> <li>X-ray arrays, cameras</li> </ul>       |
|                                         | <ul> <li>Divertor camera</li> </ul>             |
|                                         | <ul> <li>Divertor bolometer (proto.)</li> </ul> |
| Test HHFW current drive efficiency      | <ul> <li>Control system development</li> </ul>  |
|                                         | <ul> <li>k<sub>  </sub> control</li> </ul>      |
|                                         | <ul> <li>FIReTIP (polarimetry)</li> </ul>       |
|                                         | <ul> <li>Scanning NPA</li> </ul>                |

#### **Summary**

- We expect significant improvements for FY'02 run
  - Improved plasma control
  - Improved wall conditioning: 350°C bakeout,
  - Plasma boronization
  - Inner wall gas fuelling capability
  - Routine operation of HHFW system with advanced capability
    - Feedback control of launched fast-wave k<sub>||</sub> spectrum
  - Reduction in error fields from PF5 coil realignments
- New and improved diagnostics will become available during the run