

Culham Sci Ctr

#### **Turbulence & Transport Plan for FY07-09**

College W&M **Colorado Sch Mines** 

Columbia U

Comp-X

**General Atomics** 

INEL

**Johns Hopkins U** 

LANL

LLNL

Lodestar

MIT

**Nova Photonics** 

New York U

**Old Dominion U** 

**ORNL** 

**PPPL** 

**PSI** 

Princeton U

SNL

Think Tank, Inc.

**UC Davis** 

**UC Irvine** 

**UCLA** 

**UCSD** 

**U** Colorado

**U Maryland** 

**U** Rochester

**U Washington** 

**U Wisconsin** 

Kevin Tritz (JHU) Stan Kaye (PPPL)

Draft talk for PAC-21 PPPL, Jan 17-19, 2007





U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U Tokyo JAERI** Hebrew U loffe Inst RRC Kurchatov Inst **TRINITI KBSI** KAIST ENEA, Frascati CAE, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep

# NSTX Provides Unique Opportunities to Investigate Critical Turbulence & Transport Issues



- Operation spans turbulence regimes
  - electrostatic  $\rightarrow$  electromagnetic at high- $\beta_T$
- NBI primarily heats electrons
  - analogous to  $\alpha$ -heating, ITER relevant
- High rotation and rotational shear influences transport and turbulence stabilization, ITBs



- Excellent laboratory for electron physics studies
  - electrons anomalous
  - ions ~neoclassical
- Low B<sub>T</sub> allows measurement of localized electron-scale turbulence
  - $\rho_e \sim 0.1$ mm
- FY07 run will address broad range of T&T topics while focusing on measuring and understanding high-k fluctuations

#### Turbulence & Transport Goals for FY07 a Mixture of Focus and Breadth



#### Research Milestone (R07-1)

Study variation of local high-k turbulence with plasma conditions

Other Research Goals

- Contribute to ITPA and inter-machine experiments
  - global scaling and profile databases (L, H, L→H)
- Probe local electron transport
  - high-k milestone, perturbative heat transport studies
- Momentum transport/confinement
  - prepare for JOULE Milestone FY08
- Investigate particle transport
  - relation of measured ion/impurity transport to neoclassical theory
- Extend ST scaling database
  - establish confidence for projection to future devices, e.g. CTF

### New Diagnostic Tools Enhance Turbulence and Transport Studies



- 30 channel MPTS provides higher resolution T<sub>e</sub>, n<sub>e</sub> profiles
- MSE: 12 + 4 channels provides a stronger, more detailed j(r) constraint (NOVA Photonics)
- Multicolor tangential SXR system allows fast (<1ms) T<sub>e</sub>(r) reconstruction (JHU)
- Reflectometer upgrades for low-k radial/poloidal correlation measurements, backscattering for high-k measurements (UCLA)
- High-k collection mirror upgrade improves beam convergence, simplifies scanning of radial position, k<sub>0</sub> measurement under evaluation for FY08
- Poloidal CHERS now installed; expect analyzed data at end of run

# High-k System Provided Initial Measurements of Short Wavelength Turbulence During FY06



- Microwave scattering system measures reduced fluctuations (ñ/n) in upper ITG/TEM and ETG ranges during H-mode
- TRANSP calculations indicate reduced transport after L→H transition
  - electron transport remains anomalous
  - ions at neoclassical level
- GS2 calculations show lower linear growth rates during H-mode: ETG unstable?
- Non-linear GTC results indicate ITG modes stable during H-mode
  - consistent with  $\chi_i$  ~ neoclassical







#### RF-heated Plasmas Provide a Good Testbed for Electron Turbulence Theory



- Linear GS2 results indicate difference in high-k stability between ohmic and RF heated plasmas
- High-k measurements will study variation in turbulence fluctuation levels as function of T<sub>e</sub>/T<sub>i</sub> ratio (FY07 milestone)



#### What Causes Improved Confinement in Reversed Magnetic Shear Plasmas?





Strong reverse shear L-mode achieves higher  $\nabla T_e$  and lower  $\chi_e$ ,  $\chi_i$ 

Linear GS2 calculations indicate both high & low-k modes need to be considered

- ETG stabilization for S < -0.5
- μTearing (low-k) may be important
- non-linear gyro calculations underway



0.5

r/a

1.0

PAC 19-3: scan magnetic shear, high-k will measure TEM/ETG, low-k detects µTearing



(D. Stutman, *Phys. Plasmas* **13**)

magnetic shear, S

### NSTX Addresses High-Priority ITPA Tasks and Joint Machine Experiments



- $\beta$  scaling important to ITER (advanced) scenarios:  $B\tau_{98v2} \sim \beta^{-0.9}$
- Confinement shows weak β<sub>T</sub> scaling in strongly shaped NSTX plasmas
   τ<sub>e</sub>~β<sup>-0.1</sup>, κ = 2.1, δ = 0.6
- Result consistent with DIII-D and JET
- ASDEX-U and JT60-U show strong confinement degradation with β<sub>T</sub> (plasmas with weaker shaping)



- NSTX will assess  $\beta_T$  scaling in <u>weakly</u> shaped plasmas (ITPA CDB-2)
- Will participate in joint machine experiments with DIII-D/MAST to determine aspect ratio dependence of confinement (ITPA CDB-6)

# Strong B<sub>T</sub> Scaling Driven by Variation of Electron Thermal Transport







- $T_e$  profile broadens,  $\chi_e$  reduced for r/a > 0.5 with increasing  $B_T$
- ions remain ~neoclassical
- GS2 linear calculations indicate ETG unstable at 0.35 T, stable at 0.45, 0.55 T
  - BT=0.35T: R/L<sub>Te</sub> 20% above critical gradient
  - BT=0.45, 0.55T: R/L<sub>Te</sub> 20-30% below critical gradient

(S. Kaye, submitted to Nucl. Fusion)



# Perturbative Transport Experiments using Pellet Injection Support R/L<sub>Te</sub> Near Critical Gradient



- Soft X-ray system resolves fast T<sub>e</sub> perturbation
- Pellets injected into high power H-mode, B<sub>T</sub> = 0.45T
  - exhibits stiff profile behavior
  - suggests T<sub>e</sub> profile close to marginal stability
  - injection into reversed shear L-mode show profiles not stiff



PAC 19-3: Role of reverse shear on profile stiffness, comparisons to R/L<sub>TE</sub>

#### Heat Flux Transport Studies Indicate Potential Role of Rational Surfaces on Electron Confinement



- H-mode plasmas with different q profiles show large difference in  $\chi_e$  for r/a < 0.7
  - verified with pellet injection perturbation measurements
- Plasma parameters roughly comparable
  - low-χ<sub>e</sub> plasma has q=2 at large r/a, location of reduced transport
- Effect observed on T<sub>e</sub> profile in L-mode upon entry of q=2 rational surface
  - ITB formation, radial propagation
- Similar to ITBs seen in DIII-D L-mode
  - reduced low, mid-k fluctuations
- Plan to validate effect in H-mode
  - smaller NSTX ρ\*, (ITPA TP-8.2)
  - measure zonal flows with Doppler reflectometry

2 MW L-mode (112989)



## n=3 Braking Coils Allow Momentum Transport and Confinement Experiments



- NBI driven momentum transport
  - NSTX/DIII-D joint experiment, (ITPA TP-6.3)
- Plasma rotation can be controlled through n=3 magnetic braking
  - measure profile recovery from perturbation
  - assess effect of rotation on momentum and energy confinement

- Poloidal CHERS diagnostic operational for FY07 run
  - FY08 milestone: measure poloidal rotation at low-A and comparison to theory
- FY07 diagnostics and momentum experiments provide groundwork for FY08 JOULE milestone: rotation and momentum transport physics

# Particle Transport Experiments will Investigate Ion/Impurity Confinement



- H-mode impurity seeding with neon gas puffing
  - MIST calculations indicate ~neoclassical transport
  - consistent with previous L-mode work
- Argon, CD4 puffing will verify Z-scaling
- n=3 magnetic braking will investigate rotational effects on particle transport







PAC 19-5: Advance understanding of particle transport and control

#### Maturing Analysis Tools used to Guide Experimental Planning and Analysis



- TRANSP analysis mature
  - free boundary, predictive TRANSP under development
    - incorporate TEQ (LLNL) for equilibrium calculations
    - incorporate TGLF (GA), when ready, for transport calculations
- Gyrokinetic codes used for analysis
  - GS2 (flux tube, linear and non-linear)
  - GTC (global, non-linear)
  - GEM (global, non-linear, collaboration with U. Colorado)
  - GYRO (global, linear and non-linear, collaboration with G.A.)
    - presently assessing low—high-k in reverse shear plasmas
- Other collaborations
  - IFS, U. Texas (Horton, Kim)
  - Max Planck-Garching (Jenko)
  - U. Saskatchewan (Joiner)

## Plan to Compare Experimental Observations and Theory Predictions of Turbulence Fluctuations



|       |                              | Jan                                                                          | Feb                                  | March                                           | April                                            |
|-------|------------------------------|------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------|--------------------------------------------------|
| GTC   | ITG $K_{\perp} \rho_i < 1.5$ | K <sub>r</sub> -spectrum diagnostic in code (1/20)                           | Application                          |                                                 | Sherwood                                         |
|       | ETG $K_{\perp} \rho_i < 80$  | Particle decomposition and transition to XT-3                                | Application(2/20)                    |                                                 | Sherwood                                         |
|       | ITG/TEM                      | Code development                                                             | Benchmarking and convergence studies | Application(3/1)                                | Sherwood                                         |
| GEM   | ITG/TEM Tearing/KBM          | Convergence tests with numerical profiles                                    | Include ion flow                     | Applications                                    | Sherwood                                         |
|       | ETG                          | Improve ion response                                                         | Implement TRANSP interface(2/20)     | Applications(3/20)                              |                                                  |
| EXPT. |                              | Microwave Scattering $(k_r=2-25 \text{ cm}^{-1})$ $3 < K_\theta \rho_i < 30$ |                                      | Low-k reflectometry $K_{\theta} \rho_{i} < 0.6$ | High-k backscattering $K_{\theta} \rho_{i} < 30$ |
|       | GTC<br>GTC<br>EXP            |                                                                              | 1 k ρ <sub>s</sub> 10                | GTC-E1                                          | ΓG                                               |

# FY07 T&T Experimental Program Addresses Milestone and Broad Physics Issues



- R07-1 Study variation of local high-k turbulence with plasma conditions
  - RF-heated/reverse shear plasmas good testbeds for theory
  - additional high-k measurements in H-mode plasmas
- ITPA/Joint machine experiments leverage low-A NSTX contributions
  - address high-priority ITPA tasks
  - extend to low-A to test theory
  - establish basis for scaling to CTF
- Local transport experiments explore thermal and particle transport
  - correlate local electron transport with high-k measurements
  - test relation of neoclassical theory to measured ion/impurity transport
- Rotation and momentum confinement/transport studies
  - poloidal CHERS will acquire data, ready for FY08 milestone
  - momentum transport experiments, preparation for JOULE milestone

Analysis codes continue to improve, benchmark with diagnostics

## Experiments for FY07 Address Milestone and Turbulence and Transport Goals

#### **Priority 1**

- Study of high-k turbulence in RF heated plasmas
- Effects of reverse shear on electron confinement
- Joint machine momentum transport using braking
- Confinement vs. A study for future ST optimization
- Confinement vs. beta in weakly shaped plasmas
- Role of rational q surfaces in electron transport
   Priority 2
- Relationship between ELMs and electron transport
- NBI driven momentum transport/ion power balance
- DIII-D/NSTX study on energy/momentum confinement
- Investigation of magnetic electron transport on NSTX
- Z-scaling of impurity transport
- B<sub>T</sub> scaling of core high-k fluctuations
- Spontaneous rotation with no external torque



#### Projected Turbulence and Transport Plans and Goals for FY08-FY09



- Confinement and transport dependencies
  - develop understanding of role of q(r) and  $\mu$ -instability driving terms
  - complete aspect ratio dependence and toroidicity scaling similarity experiments with DIII-D/MAST
- Role of rotation, E<sub>r</sub>
  - establish momentum flux dependencies and controlling physics
  - understand/exploit relation between E<sub>r</sub> shear and reduced transport
  - study zonal flows
- Role of low- and high-k turbulence
  - relate changes in turbulence to changes in transport over range of operating conditions
  - integrate measurements from turbulence diagnostics for comprehensive picture across full wavenumber spectrum
- Theoretical basis for transport and heating
  - test role of ITG, ETG, ... by varying drive and stabilization terms
  - continue comparisons to gyrokinetic theory over range of transport regimes: linear and non-linear calculations

- develop predictive capabilities