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The ST on the path to fusion

JET ITER DEMO

CTF

MAST
Upgrade

MAST

A spherical tokamak 
(ST) could provide a 

cost effective 
Component Test 
Facility (ST-CTF)
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Plasma current

Main issues for fusion tokamaks

Fast ion 
physics

Current 
Drive

Heat loads

A 2 GW fusion power plant 
needs to exhaust roughly 

~0.4 GW
and drive of the order of

15 MA
plasma current
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Three major upgrades for MAST, but … 
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Define core scope 

Core Scope

Pump installed but cryoplant is dependent on funding

Single beam box  
2.5 MW on-axis

Need to deliver working 
tokamak within fixed budget 

and 
Considerable uncertainties 

prior to contract placement.



Major uncertainties

• 8 new 4 quadrant divertor power supplies.
– Low level of ripple required for Super-X.
– Contract now placed within estimated budget.

• New toroidal field power supply.
– Contract now placed within estimated budget.

• 14 new in vessel coils.
– Contract now placed within estimated budget.

• 3 Cyanate ester airside coils.
– New solenoid – long conductor!

• Currently assessing which parts of Stage 1 can be 
re-introduced.
– Cryo-plant and/or Double Beam box.
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MAST-U simplified Time line
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This talk takes you…

From the plasma core…
Enabling current drive physics

Through the plasma edge… 
Enabling divertor physics 

To what lies beyond the plasma   
The engineering! 
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Broad current profiles are beneficial

Advanced shaping ⇒ Broader current profile, 
improved edge stability

Advanced MHD stability ⇒ Higher pressure

current drive

heating
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Advanced profile control

• On-axis ⇒ peaked.

Flexibility on fast ion density profiles
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Advanced profile control

• On-axis ⇒ peaked.
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Flexibility on fast ion density profiles
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Flexibility on fast ion density profiles

Advanced profile control

• On-axis ⇒ peaked.

• Off-axis ⇒ hollow.

• On- and off-axis ⇒ broad.

MAST-U physics studies

• About 1 MA of non-
inductive current drive 
⇒ long pulse length.
– Needs all 3 beams!

• High fast-ion pressure 
(60% of total pressure)
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Plasma may spread fast ions out 

• Fast ions have only few collisions.
– Should be localised to 

sources. 

• Experiments suggest 
source profile broadens.
– Instabilities? – yes, localised?
– Turbulence? – yes, how?  

• Modelled as “anomalous” 
diffusion DFI(r,E,…)
– Crude, ad hoc.
– Wrong for instabilities.

• Need Integrated modelling 
– Current profile affects stability/turbulence.
– stability/turbulence changes current drive.



Neutron Camera – measuring sources
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• 4 channel neutron camera in collaboration with Uppsala University 
(Sweden).

• Can be scanned from shot to shot.



Neutron Camera – measuring sources
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Modelling 

• High fast ion redistribution in DN MAST discharges with 2 beams 
(Ip=0.8 MW)

• With one beam no redistribution is needed.

• Off axis heating may be more beneficial.

0.8 MA DND
L-mode



MAST-U: qmin> 1.3 ⇒less redistribution.

• Higher qmin> 1.3 helps to avoid detrimental MHD.

• Neutron rate doubles with double the beam power.
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0.8 MA SND
L-mode
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Horizontal and Vertical FIDA

• Fast ion transport 
with 
TRANSP/FIDASIM 
modelling.

• Example: 1 beam 
SND (DFI=0, 
classical).

• Horizontal: below 
classical in core 
and above in 
edge.

• Vertical: Signal is 
much lower 
indicates loss of 
trapped particles.

19
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Low-k turbulence

ORB5 simulation

2 cm

1.5 cm

1.
5 

cm

~ 16 cm
~ 

8 
cm

8x4 channels
ΔR ~ 2 cm, 2 MHz
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• Ion-scale density turbulence measured with 2D BES

• Allows study of interaction of flow-shear and 
anomalous, ion-scale turbulent transport

• Signal-to-noise sufficient to measure core turbulence



Low-k turbulence
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• Ion-scale density turbulence measured with 2D BES

• Allows study of interaction of flow-shear and 
anomalous, ion-scale turbulent transport

• Signal-to-noise sufficient to measure core turbulence

• Synthetic diagnostic to compare with GK modelling.
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This talk takes you…

From the plasma core…
Enabling current drive physics

Through the plasma edge… 
Enabling divertor physics 

To what lies beyond the plasma   
What is upgraded?
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Conventional versus Super-X

Contours at 
5mm intervals 
from 
separatrix at 
outboard mid-
plane



Hendrik Meyer, PPPL Seminar, 17/04/2012, Princeton USA

Flexible divertor geometry

• Unique divertor 
concept ⇔ Super-X

• Large plasma 
volume in the 
divertor.
– Neutral-plasma 

interactions.
– Impurity radiation.

• Can the target heat 
load be reduced?

• Can the geometry 
be controlled?
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Geometric Advantage of Super-X
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Plasma Physics Advantage

• Confirmed by 2D fluid edge 
plasma simulations:

– Here, low power (1.8MW) into 
SOL, but …

– high power simulations show 
same trend.

• Low collisionality (hot SOL)
⇒ T const. along the field line

• High collisionality
⇒ T drops towards the target.

• Increased connection length
⇒ increased collisionality.
⇒ increased temperature drop 

along field line



Nose

pump
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The Particle Control Compromise

• Density control is fundamental 
to MAST-U.

✓

X
+

+

00

+

0

• Seek minimal recycling from 
the main-chamber baffle 
surface
⇒ require sufficiently diffuse plasma 

at edge of throat 

• Seek high neutral density in 
the divertor ⇔ efficient 
pumping
⇒Require sufficient plasma in 

throat
• to prevent divertor neutrals 

leaving
• for low main-chamber density
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ELM filaments will still hit the baffle
• Perpendicular SOL 

transport is not diffusive.

• Mean field approximation 
is not sufficient.

• Need a further 
understanding of the ELM 
and ELM avoidance.

lo
g(

T,
n)

R – Rsep.

near SOL

far SOL, filaments



ELMs can be mitigated using 3D B fields
Application of resonant magnetic 
perturbations in n=6
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18 in vessel coils for ELM 
mitigation



Observation of lobes near the X-point

IELM (kA)

Application of resonant magnetic 
perturbations in n=6

Lobe structures are observed when
IELM>ITHR 
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18 in vessel coils for ELM 
mitigation



Observation of lobes near the X-point

IELM (kA)

Application of resonant magnetic 
perturbations in n=6

Lobe structures are observed when
IELM>ITHR 
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EBW imaging – j(r) during the ELM
• Electron Bernstein Wave mode 

conversion mechanism contains 
information on  ∇ne and B.
– Need to measure EBW 

emission window.

• The new Synthetic Aperture 
Microwave Imaging (SAMI) 
diagnostic uses a novel technique 
for producing images of thermal 
emission in the range 10 - 40 
GHz.
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Full wave 
simulation



EBW imaging – j(r) during the ELM
• Electron Bernstein Wave mode 

conversion mechanism contains 
information ∇ne and B.
– Need to measure EBW 

emission window.

• The new Synthetic Aperture 
Microwave Imaging (SAMI) 
diagnostic uses a novel technique 
for producing images of thermal 
emission in the range 10 - 40 
GHz.

• First SAMI images from EBW 
emission obtained.
– Technique works, but some 

differences between 
experiment and simulation.

• First steps to calculate j(r).
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Measurement
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Divertor diagnostic challenge
• Large range in ne and Te in 

the SOL.

• Low temperature plasma.
⇒Neutrals, impurities
⇒Line radiation, atomic 

data.

• The SOL is turbulent: δn/n ~ O(1)
• Many different diagnostics needed



Divertor diagnostic challenge
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Bolometer

Reciprocating 
Probe

ELM coilsPassive stabilising plate
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This talk takes you…

From the plasma core…
Enabling current drive physics

Through the plasma edge… 
Enabling divertor physics

To what lies beyond the plasma   
The engineering!



Modular assembly 

• Optimise 
engineering 
break.

• Progress work 
in parallel.

• Better 
alignment.

Top Plate Module (TPM)

Centre Tube Module (TPM)

Cylinder Module (CM)

Bottom Plate Module (BPM)

Centre Stack Module (CSM)



New crane enables fast assembly

• Move MAST out of the block house (test cell).

• Parallel assembly outside the machine area.
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Coil cans - Explosion forming

• D1 can (4mm SS 316L) most complicated.

• Assessment of prototype is positive.
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FEM Strain simulation



Coil cans - Explosion forming

• D1 can (4mm SS 316L) most complicated.

• Assessment of prototype is positive.
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FEM Thickness simulation

4.20 mm3.00 mm



Divertor temperature during operations
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Heating Fractions T1t n int
61.3 C= DT1 

λ DT1 0.2= T2t n int
73.4 C= DT2 

λ DT2 0.8= T3t n int
67.9 C= DT3 

λ DT3 0.0= T4t n int
56.4 C= DT4 

λ S 0.0=

λ B 0.0= λ bo 0.0=
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MAST-U – a major step for fusion

Super-X divertor
⇒ Finding solutions for the 
exhaust problem

Flexible distribution of 
super-Alfvénic ions 
⇒ Testing burning plasmas 

100% non inductive 
current drive
⇒ Exploring the way 
towards the steady state

Advanced current profiles
⇒ Advanced stability for 
better confinement

H Meyer

The procurement process has 
started!

Shutdown from Oct. 2013 
until April 2015
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Divertor

• Put heat + particles into core plasma

• Transport processes remove these

• Divertor handles “exhaust”:
– Controls surface temperatures
– Controls impurities
– Removes particles

• Benefits:
– Improved performance
– Cleaner experiments 
– Control of core plasma density

A Divertor (Simplistically…)

PowerParticles

BeamsGas

Core 
Plasma

Outer 
Scrape-off 
Layer (SOL)

Inner 
Scrape-off 
Layer (SOL)

Cryopump
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Super-X Concept

• Basic concept: Increase radius of strike point (Rdiv).
+ Larger Rdiv ⇒ larger wetted area.
+ Lower toroidal field ⇒ lower parallel heat flux.

• Increased connection length using low poloidal field 
in divertor chamber.
+ Increased volume for plasma interactions.

Conventional

Rdiv

Super-X

Rdiv

Super-X concept: 
Valanju et al. Phys. Plasmas 
16, 056110 (2009)

connection length:
length along the 
field line from 

mid-plane to target


