

Status of the MAST Upgrade

Hendrik Meyer

MAST-U physics case leader for the MAST-U Physics and Engineering Team

EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

The ST on the path to fusion

Upgrade

A spherical tokamak (ST) could provide a cost effective Component Test Facility (ST-CTF)

Three major upgrades for MAST, but ...

- 8 new 4 quadrant divertor power supplies.
 - Low level of ripple required for Super-X.
 - Contract now placed within estimated budget.
- New toroidal field power supply.
 - Contract now placed within estimated budget.
- 14 new in vessel coils.
 - Contract now placed within estimated budget.
- 3 Cyanate ester airside coils.
 - New solenoid long conductor!
- Currently assessing which parts of Stage 1 can be re-introduced.
 - Cryo-plant and/or Double Beam box.

MAST-U simplified Time line

From the plasma core... Enabling current drive physics

Through the plasma edge... Enabling divertor physics

To what lies beyond the plasma The engineering!

From the plasma core... Enabling current drive physics

Through the plasma edge... Enabling divertor physics

To what lies beyond the plasma The engineering!

Broad current profiles are beneficial

Sector Energy Flexibility on fast ion density profiles

Advanced profile control

• On-axis \Rightarrow peaked.

Flexibility on fast ion density profiles

Advanced profile control

- On-axis \Rightarrow peaked.
- Off-axis \Rightarrow hollow.

Flexibility on fast ion density profiles

Advanced profile control

- On-axis \Rightarrow peaked.
- Off-axis \Rightarrow hollow.
- On- and off-axis \Rightarrow broad.

Flexibility on fast ion density profiles

Advanced profile control

- On-axis \Rightarrow peaked.
- Off-axis \Rightarrow hollow.
- On- and off-axis \Rightarrow broad.

MAST-U physics studies

- About 1 MA of noninductive current drive
 - \Rightarrow long pulse length.
 - Needs all 3 beams!
- High fast-ion pressure (60% of total pressure)

CCFE

- Fast ions have only few collisions.
 - Should be localised to sources.
- Experiments suggest source profile broadens.
 - Instabilities? yes, localised?
 - Turbulence? yes, how?
- Modelled as "anomalous" diffusion D_{FI}(r,E,...)
 - Crude, ad hoc.
 - Wrong for instabilities.
- Need Integrated modelling
 - Current profile affects stability/turbulence.
 - stability/turbulence changes current drive.

UPPSALA UNIVERSITET

- 4 channel neutron camera in collaboration with Uppsala University (Sweden).
- Can be scanned from shot to shot.

CCFE Neutron Camera – measuring sources

- High fast ion redistribution in DN MAST discharges with 2 beams (I_p=0.8 MW)
- With one beam no redistribution is needed.
- Off axis heating may be more beneficial.

- Higher $q_{min} > 1.3$ helps to avoid detrimental MHD.
- Neutron rate doubles with double the beam power.

Horizontal and Vertical FIDA

- Fast ion transport • with TRANSP/FIDASIM modelling.
- Example: 1 beam SND $(D_{FI}=0,$ classical).
- Horizontal: below classical in core and above in edge.
- Vertical: Signal is • much lower indicates loss of trapped particles.

656

1.4

- Ion-scale density turbulence measured with 2D BES
- Allows study of interaction of flow-shear and anomalous, ion-scale turbulent transport
- Signal-to-noise sufficient to measure core turbulence

- Ion-scale density turbulence measured with 2D BES
- Allows study of interaction of flow-shear and anomalous, ion-scale turbulent transport
- Signal-to-noise sufficient to measure core turbulence
- Synthetic diagnostic to compare with GK modelling.

ORB5 density fluctuations, dn_e/n_e, orb5_22807_0.25_01

From the plasma core... Enabling current drive physics

Through the plasma edge... *Enabling divertor physics*

To what lies beyond the plasma What is upgraded?

SCCFE Conventional versus Super-X

Flexible divertor geometry

- Unique divertor concept ⇔ Super-X
- Large plasma volume in the divertor.
 - Neutral-plasma interactions.
 - Impurity radiation.
- Can the target heat load be reduced?
- Can the geometry be controlled?

FE Geometric Advantage of Super-X

Plasma Physics Advantage

- Low collisionality (hot SOL) •
 - T const. along the field line
- High collisionality •
 - T drops towards the target.
- Increased connection length •
 - increased collisionality.
 - increased temperature drop along field line

- Confirmed by 2D fluid edge plasma simulations:
 - Here, low power (1.8MW) into SOL, but ...
 - high power simulations show same trend.

The Particle Control Compromise

Ν

- Density control is fundamental to MAST-U.
- Seek high neutral density in the divertor \Leftrightarrow efficient pumping
 - \Rightarrow Require sufficient plasma in throat
 - to prevent divertor neutrals leaving
 - for low main-chamber density
- Seek minimal recycling from the main-chamber baffle surface
 - \Rightarrow require sufficiently diffuse plasma at edge of throat

CCFE ELM filaments will still hit the baffle

- Perpendicular SOL transport is not diffusive.
- Mean field approximation is not sufficient.
- Need a further understanding of the ELM and ELM avoidance.

ELMs can be mitigated using 3D B fields

18 in vessel coils for ELM mitigation

Application of resonant magnetic perturbations in n=6

FE Observation of lobes near the X-point

18 in vessel coils for ELM mitigation

Application of resonant magnetic perturbations in n=6

Lobe structures are observed when $I_{ELM} > I_{THR}$

Observation of lobes near the X-point

FE

Application of resonant magnetic perturbations in n=6

Lobe structures are observed when $I_{ELM} > I_{THR}$

EBW imaging – j(r) during the ELM

- **Flectron Bernstein Wave mode** conversion mechanism contains information on ∇n_e and B.
 - Need to measure EBW emission window.
- The new Synthetic Aperture Microwave Imaging (SAMI) diagnostic uses a novel technique for producing images of thermal emission in the range 10 - 40 GH₇.

THE UNIVERSITY of York

EBW imaging – j(r) during the ELM

- Electron Bernstein Wave mode conversion mechanism contains information ∇n_e and B.
 - Need to measure EBW emission window.
- The new Synthetic Aperture Microwave Imaging (SAMI) diagnostic uses a novel technique for producing images of thermal emission in the range 10 - 40 GHz.
- First SAMI images from EBW emission obtained.
 - Technique works, but some differences between experiment and simulation.
- First steps to calculate j(r).

THE UNIVERSITY of York

L-mode, 15 GHz, shot #27022

Divertor diagnostic challenge

The SOL is turbulent: δn/n ~ O(1) Many different diagnostics needed

Divertor diagnostic challenge

Passive stabilising plate

ELM coils

From the plasma core... Enabling current drive physics

Through the plasma edge... Enabling divertor physics

To what lies beyond the plasma The engineering!

Modular assembly

New crane enables fast assembly

- Move MAST out of the block house (test cell).
- Parallel assembly outside the machine area.

Coil cans - Explosion forming

FEM Strain simulation

- D1 can (4mm SS 316L) most complicated.
- Assessment of prototype is positive.

Coil cans - Explosion forming

- D1 can (4mm SS 316L) most complicated.
- Assessment of prototype is positive.

Divertor temperature during operations

MAST-U Divertor Cooling

MAST-U – a major step for fusion

CCFE

A Divertor (Simplistically...)

Super-X Concept

- Basic concept: Increase radius of strike point (R_{div}).
 - + Larger $R_{div} \Rightarrow$ larger wetted area.
 - + Lower toroidal field \Rightarrow lower parallel heat flux.
- Increased connection length using low poloidal field in divertor chamber.
 - + Increased volume for plasma interactions.

<u>Super-X concept</u>: 5. Valanju et al. Phys. Plasmas 16, 056110 (2009)