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In one popular paradigm for the L-H transition, energy transfer to the mean flows directly
depletes turbulence fluctuation energy, resulting in suppression of the turbulence and a corre-
sponding transport bifurcation. To quantitatively evaluate this mechanism, one must remember
that electron parallel force balance couples nonzonal velocity fluctuations with electron pressure
fluctuations on rapid timescales, comparable with the electron transit time. For this reason,
energy in the nonzonal velocity stays in a fairly fixed ratio to the free energy in electron density
fluctuations, at least for frequency scales much slower than electron transit. In order for direct
depletion of the energy in turbulent fluctuations to cause the L-H transition, energy transfer via
Reynolds stress must therefore drain enough energy to significantly reduce the sum of the free
energy in nonzonal velocities and electron pressure fluctuations. At low k?, the electron thermal
free energy is much larger than the energy in nonzonal velocities, posing a stark challenge for
this model of the L-H transition. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4951015]

Although the edge transport barrier regime known as
H-mode was discovered experimentally over 30 years ago1

and is necessary in order for ITER to achieve its performance
goals, we still lack a clear, universally accepted explanation
of the physics underlying this enhanced confinement re-
gime.2,3 However, most models in current discussion are
based around the effect of radially sheared E! B velocities.4

In one popular variant of this picture, turbulent fluctuations
directly lose energy via transfer to the shear flows.5

Experimental attempts to validate this variant have used
energy balance between the zonal and nonzonal portions of
the E! B velocity to estimate the effect of energy transfer
via Reynolds stress.6,7 In the following, I will briefly demon-
strate that such analysis must be corrected to include the
nonzonal portion of the free energy in electron density fluc-
tuations. Since this energy may often be much larger than
the energy in the E! B velocity, its inclusion may signifi-
cantly affect the viability of the direct energy-transfer para-
digm in explaining the L-H transition.

We will treat the problem in a very simple two-fluid
flux-tube model, with isothermal electrons, a single species
of singly ionized cold ions, purely resistive parallel dynam-
ics, frequencies fast relative to ion transit (x" cs=qR), and
a shearless, simple-circular, large-aspect-ratio magnetic ge-
ometry. [Although this model must be generalized for quan-
titative treatments of edge turbulence in experiment, these
generalizations do not affect the basic structure underlying
our conclusions. Some effects of omitted generalizations will
be mentioned throughout the text.] The resulting equations
appear in SI units8 as

@t þ vE $rð Þ ne þ n0ð Þ ¼
1

e
rkjk þ

1

e
K n0e/( neTe0ð Þ; (1)

n0mi

B2
@t þ vE $rð Þr2

?/ ¼ rkjk (K neTe0ð Þ; (2)

gjk ¼
Te0

n0e
rkne (rk/: (3)

Equation (1) shows the evolution of fluctuating electron den-
sity ne under advection by the E! B drift vE ¼ B(1b̂ !r/,
divergence of the parallel current rkjk (equivalent to (e
times parallel electron density flux, due to our orderings), and
the toroidal effects due to K¼: ( ð2=B2Þb̂ !rB $r, both the
curvature and rB drifts /e(1KðneTe0Þ and the divergence of
the E! B drift (Kð/Þ. E! B advection down the gradient
of the mean density n0 is the sole free energy source in this
model. Eq. (2) essentially states that the current must be diver-
gence-free: the LHS is (minus) the divergence of the ion
polarization current (both linear and nonlinear), while the
RHS consists of the divergence of the electron curvature
current (KðneTe0Þ and the parallel current rkjk. Eq. (3)
determines the parallel current by a balance between resistive
drag n0egjk and the parallel forces on electrons, due to elec-
tron pressure gradient (Te0rkne and electric force n0erk/.
After evaluation of K and the substitution vE $rn0 !
(ðn0=LnÞvx

E [for vx
E¼
:
vE $rx, radial coordinate x, and

1=Ln¼
: ( n(1

0 ðdn0=dxÞ], we may take n0; Te0, and B to be
constants. Eqs. (1)–(3) may be seen as a generalization of the
Hasegawa-Wakatani equations9 to include some toroidal
effects, or as a simplification of isothermal Braginskii or gyro-
fluid equations.10

In many cases, the parallel resistivity g is small enough
that parallel electron diffusion is rapid relative to other phys-
ical processes. In this case, if the terms on the RHS of
Eq. (3) do not approximately cancel, then a large parallel
current jk is needed to make gjk large enough to satisfy
Eq. (3), so Eqs. (1) and (2) will simplify to11a)Electronic mail: tstoltzf@pppl.gov
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?/ ) rkjk ¼
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Te0

n0e
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kne (r2
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Considering a single Fourier mode in the perpendicular direc-
tion so r2

? ! (k2
?, we may combine Eqs. (4) and (5) to

evolve the dimensionless combination he¼
:

ne=n0 ( e/=Te0

@the ¼
Te0

gn0e2
1þ 1

k2
?q2

s

! "
r2
khe; (6)

showing dissipation of he due to parallel conduction. The
basic rate can easily be seen to follow from (collisional)
parallel electron diffusion: k2

kTe0=gn0e2 ¼ k2
kv

2
te=!ei for

vte¼
: ðTe0=meÞ1=2 and !ei the appropriate electron-ion colli-

sion rate. The factor of 1=k2
?q

2
s , with the “sound radius” qs

just the ion gyroradius evaluated at the electron temperature
qs¼
:

csmi=eB for cs¼
: ðTe0=miÞ1=2,12 can substantially

increase the damping rate for he, in the common case of
fluctuations at k?qs * 1, that is, for cross-field spatial
scales larger than the sound radius. The physical reason is
more straightforward than it may appear: at these larger
spatial scales, the ion polarization response becomes weak,
so that even a small parallel current can cause a large
change in /. This means that for whatever parallel current
divergence we get from Ohm’s Law [Eq. (3)], the change in
the potential must be larger by 1=k2

?q
2
s to bring in enough

ions (across the field) to maintain quasineutrality. From this
analysis, we may conclude that at timescales longer than
the very short timescale !eik2

?q
2
s=k2
kv

2
te corresponding to par-

allel electron diffusion, the RHS of Eq. (3) must be in ap-
proximate balance, so that rkðne=n0Þ ) rkðe/=Te0Þ. If we
were to include electron inertia or electromagnetic fluctua-
tions [neglected in Eqs. (1)–(3)], we would slow the short
timescale to the longest of three parallel electron time-
scales: resistive (given here), collisionless (going with elec-
tron transit time), or Alfv!enic (going with Alfv!en damping
time), but the ultimate relaxation to electron adiabatic
response would be unchanged, as long as our other frequen-
cies were still much slower than the slowest electron paral-
lel rate.

Since the magnetic field is always tangential to the flux
surface, the parallel gradient vanishes for anything that is con-
stant over the flux surface. For this reason, it is advantageous
to decompose the potential / into its flux-surface average h/i
(the “zonal” potential), which is constant over a flux surface
so that rkh/i ¼ 0, and the remaining “nonzonal” potential
~/¼: /( h/i, which trivially satisfies h~/i ¼ 0. In our simple
geometry, we may define a radial coordinate x and binormal

coordinate y such that vx
E¼
:
vE $rx¼(B(1@y/, vy

E¼
:
vE $ry

¼B(1@x/, and r2
?)@2

x þ@2
y , in which @x and @y are partial

derivatives with respect to x and y. We may then decompose

vy
E¼ hv

y
Eiþ~vy

E with hvy
Ei¼B(1@xh/i and ~vy

E¼B(1@x
~/. Since

the flux-surface average involves integrating over the angle-
like y, the corresponding decomposition for vx

E is simply

hvx
Ei¼0 (by periodicity of / in y) so vx

E¼~vx
E

¼(B(1@y/¼(B(1@y
~/.

Turbulent evolution is complicated, due primarily to
the advective nonlinearities, in our case the ðvE $rÞne and
ðvE $rÞr2

?/ terms in Eqs. (1) and (2). Some insight may
therefore be gained by considering quantities that are invariant
under the nonlinearities, that is, quantities whose evolution
equations do not contain the nonlinear terms. Much produc-
tive analysis has resulted from a focus on fluctuation free
energy, a nonlinear invariant that is proportional to the square
of the turbulent amplitudes, roughly measuring the strength
of the fluctuations. Such equations may be derived for
Eqs. (1)–(3) as follows: Multiply Eq. (1) by Te0ne=n0 and
Eq. (2) separately by (~/ and by (h/i, then integrate each
resulting equation over some volume

Ð
dV and do some inte-

grations by parts, neglecting the fluxes through the bounda-
ries. Note that rkhf i ¼ 0 and

Ð
dV hf i~g ¼ 0 for arbitrary

functions f and g. The resulting equations are13

@tEn ¼ Te0

ð
dV 1

Ln
nevx

E ( /K neð Þ (
1

n0e
jkrkne

% &
; (7)

@tE+ ¼
ð

dV½Te0
~/KðneÞ þ jkrk~/ ( n0mið~vx

E~vy
EÞ@xhvy

Ei-;

(8)

@tEz ¼
ð

dV½Te0h/iKðneÞ þ n0mið~vx
E~vy

EÞ@xhvy
Ei-; (9)

for density free energy En¼
: Te0

2n0

Ð
dV n2

e , nonzonal E! B

energy E+¼
: 1

2 n0mi

Ð
dV½ðvx

EÞ
2 þ ð~vy

EÞ
2-, and zonal E! B

energy Ez¼
: 1

2 n0mi

Ð
dVhvy

Ei
2. [For emphasis, En; E+, and Ez

refer to portions of the free energy, not to electric field
components.] The only free energy source is the nevx

E=Ln

term in Eq. (7), due to density transport down rn0. The cur-
vature term /KðneÞ conservatively transfers energy

between En and both E+ and Ez, with the ~/KðneÞ portion
often referred to as “curvature drive” and the h/iKðneÞ
portion important for geodesic acoustic modes. (The
curvature-mediated energy transfer will not play a central
role in the following analysis.) The Reynolds work term

n0mið~vx
E~vy

EÞ@xhvy
Ei conservatively transfers energy between

E+ and Ez, capturing the energy transfer that plays a key
role in many models of the L-H transition. The parallel
current plays a dual role: In the evolution of the total energy
ðEn þ E+ þ EzÞ, the summed parallel current terms contrib-

ute positive-definite dissipation, (ðTe0=eÞ
Ð

dV jkrkhe

¼ (g
Ð

dV j2k ¼ (ðT
2
e0=e2gÞ

Ð
dVðrkheÞ2 < 0. If ~he becomes

small, so ~ne=n0 ) e~/=Te0, the individual parallel current

terms (ðTe0=n0eÞjkrkne and jkrk~/ ¼ jkrk/ become

nearly equal and opposite, representing free energy transfer
between En and E+. If we suppose now that g is small

enough that ~ne=n0 ) e~/=Te0, we may immediately estimate
the ratio of free energy in nonzonal E! B velocity as com-
pared with that in the nonzonal fluctuating density,

E~n¼
: Te0

2n0

Ð
dV ~n2

e
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E+
E~n
¼

Ð
dV vx

Eð Þ
2 þ ~vy

E

' (2
h i

=c2
sÐ

dV ~n2
e=n2

0

¼ mi

Te0B2

Ð
dVjr?~/j2Ð
dV ~n2

e=n2
0

+ k2
?q

2
s ;

(10)

where k? is a representative wavenumber averaged over the
turbulent fluctuation spectrum. In the typical edge turbulence
case of fluctuations at scales much larger than the sound ra-
dius (k?qs * 1), we see that the energy in the nonzonal
velocities is much smaller than the free energy in the elec-
tron density fluctuations.

What does this imply for quantitative evaluation of the
predator-prey model5 of the L-H transition? In the predator-
prey model, direct energy transfer to the mean flows depletes
the energy content of the turbulence, resulting in suppression
of the turbulence and the transition to H-mode. In Eqs.
(7)–(9), this energy transfer appears explicitly as the
Reynolds work term, n0mið~vx

E~vy
EÞ@xhvy

Ei. Even if the correla-
tions are optimal for energy transfer to mean flows, this
energy transfer term cannot deplete E+ faster than
½
Ð

dV n0mið~vx
E~vy

EÞ@xhvy
Ei-=E+ . maxj@xhvy

Eij.
14 However, our

Eq. (6) and subsequent discussion shows that the parallel
current acts at a rapid rate +k2

kv
2
te=ð!eik2

?q
2
s Þ to enforce

~ne=n0 ) e~/=Te0, thus also E+=E~n + k2
?q

2
s . So, assuming the

parallel electron rate is fast relative to maxj@xhvy
Eij, parallel

electron physics will effectively cause the sum ðE+ þ E~nÞ to
move as a unit, with E+ and E~n staying in a roughly fixed ra-
tio to one another. So, in order for the Reynolds work term
to deplete the free energy from turbulent fluctuations, it must
transfer an amount of energy comparable with ðE+ þ E~nÞ,
rather than with E+ alone. Since E~n=E+ + 1=ðk?qsÞ

2 is often
much larger than one in edge turbulence, this makes it signif-
icantly more difficult for the Reynolds work term to directly
deplete the turbulent fluctuations’ free energy.

Alternatively, consider now a transition that is slower
than a typical instability growth rate c, so that the @tEn and
@tE+ terms in Eqs. (7) and (8) become small relative to at least
some of the energy source and transfer terms on the RHS. In
this slow-transition limit, we must balance the free energy
source cE~n¼

:
Te0

Ð
dV nevx

E=Ln against energy transfer via the
Reynolds stress

Ð
dV n0mið~vx

E~vy
EÞ@xhvy

Ei . E+maxj@xhvy
Eij,

leading to a criterion for turbulence suppression maxj@xhvy
Eij

/ cðE~n=E+Þ + c=ðk?qsÞ
2, resembling a “Waltz rule”15 that

has been modified by the factor 1=ðk?qsÞ
2. Since 1=ðk?qsÞ

2 is
typically large in edge turbulence, this formula requires a
much larger flow shear than the usual criterion (j@xhvy

Eij
! c1c, for constant c1 of order unity), suggesting that other
mechanisms must typically dominate in order to get turbu-
lence suppression at the more easily accessible shearing rate
maxj@xhvy

Eij + c.
It is important to recall that depletion of the turbulence

via energy transfer to Ez is only one of several possible
mechanisms through which E! B flow shear could suppress
turbulence. For example, sheared E! B flows could distort
the turbulent fluctuations to reduce their effective growth
rate c, or could increase their mean perpendicular wave num-
ber k? and thereby enhance cross-field dissipation.4 In that
latter case, energy would also be redistributed between E~n

and E+ as the mean k? changed. When g is small enough,

this transfer is approximately conservative, so it has little
effect on the suppression criterion for the rapid L-H transi-
tion case, since the Reynolds stress must still transfer the L-
mode level of ðE~n þ E+Þ to Ez in order to suppress the turbu-
lence. However, it could become significant for the slow-
transition case if k?qs became a significant fraction of unity
during the transition. Indirect effects, such as those due to
modification of the effective c or k? by eddy shearing, are
not directly addressed by the energy-balance arguments pre-
sented in this article, and could act to suppress turbulence
even if the direct energy depletion by Reynolds work is
negligible.

Note also that the nonadiabatic response he can become
order unity for some edge parameter values. However, the
parallel current still acts strongly enough that ~ne=n0 and
e~/=Te0 must remain comparable in magnitude at frequencies
lower than the parallel electron rate.16 This is enough to
cause the general ordering given in Eq. (10) and to support
the subsequent analysis.

In summary, parallel electron conduction causes a
relaxation of turbulent fluctuations towards adiabatic elec-
tron response (~ne=n0 ) e~/=Te0) on rapid parallel electron
transit timescales. At longer timescales, the energy in non-
zonal E! B flows E+ is held in an approximately fixed rela-
tionship to the free energy in nonzonal density fluctuations
E~n , with E+=E~n + ðk?qsÞ

2. For the typical case that the
electron transit time is fast relative to the background E! B
shearing rate, electron density fluctuations rapidly restore
nonzonal E! B energy lost by Reynolds-stress transfer,
implying that the Reynolds work term must deplete the
energy not only from nonzonal E! B flows but also from
E~n in order to suppress the turbulence. Because E~n " E+
for the typical edge turbulence case of fluctuations at scales
rather larger than qs; ðk?qsÞ

2 * 1, this makes it much more
difficult to suppress the turbulence via direct energy transfer
to sheared flows.
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BLnk2
k
+ me!eik?Te0

BeLnk2
kTe0

+ k?qscs=Ln

k2
kv

2
te=!ei

:

Since kk + 1=qR is roughly fixed by the geometry, the middle form
gk?en0=BLnk2

k shows that the ratio becomes small for small g. The right-
most form clarifies that this occurs when g is small enough that the parallel
electron diffusion rate +k2

kv
2
te=!ei is fast relative to the linear drift wave
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neglect of boundary fluxes. Due to the large-aspect-ratio approximation
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Ð

dVgrkf . Since B is tangential to a flux surface,
rkhf i ¼ 0. By definition of the nonzonal portion, we may infer thatÐ

dVhf i~g ¼ 0. As an example of the necessary manipulations, we derive
the Reynolds work term for Eq. (8)
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