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Abstract
Reflectometry measurements of compressional (CAE) and global (GAE) Alfvén eigenmodes 
are analyzed to obtain the amplitude and spatial structure of the density perturbations 
associated with the modes. A novel analysis technique developed for this purpose is presented. 
The analysis also naturally yields the amplitude and spatial structure of the density contour 
radial displacement, which is found to be 2–4 times larger than the value estimated directly 
from the reflectometer measurements using the much simpler ‘mirror approximation’. The 
modes were driven by beam ions in a high power (6 MW) neutral beam heated H-mode 
discharge (#141398) in the National Spherical Torus Experiment. The results of the analysis 
are used to assess the contribution of the modes to core energy transport and ion heating. 
The total displacement amplitude of the modes, which is shown to be larger than previously 
estimated (Crocker et al 2013 Nucl. Fusion 53 43017), is compared to the predicted threshold 
(Gorelenkov et al 2010 Nucl. Fusion 50 84012) for the anomalously high heat diffusion 
inferred from transport modeling in similar NSTX discharges. The results of the analysis 
also have strong implications for the energy transport via coupling of CAEs to kinetic Alfvén 
waves seen in simulations with the Hybrid MHD code (Belova et al 2015 Phys. Rev. Lett. 115 
15001). Finally, the amplitudes of the observed CAEs fall well below the threshold for causing 
significant ion heating by stochastic velocity space diffusion (Gates et al 2001 Phys. Rev. Lett. 
87 205003).

Keywords: Alfvén eigenmodes, energetic ions, plasma heating, plasma transport, wave-particle 
interactions, reflectometry
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1.  Introduction

Fast-ions (e.g. fusion alphas and neutral beam ions) will 
potentially excite high frequency compressional (CAE) 
and global (GAE) Alfvén eigenmodes in ITER or a Fusion 
Nuclear Science Facility device [1]. High frequency AEs have 
been shown to cause fast-ion transport [2–4], to correlate with 
anomalous electron thermal transport [5], to contribute to ion 
heating [6], and are postulated to cause energy transport [7–
10] via several different mechanisms.

A novel analysis technique is developed and applied to 
previously reported [11, 12] reflectometry measurements 
in order to obtain the density perturbation (δn) amplitude 
and structure of CAEs and GAEs in a high power (6 MW), 
beam-heated H-mode plasma (discharge # 141398) in the 
National Spherical Torus Experiment (NSTX) [13] with 
anomalous core energy transport similar to those discussed 
in [5]. Reflectometry has a long history of use as a diagnostic 
for measuring the internal amplitude and spatial structure of 
large scale density perturbations. A common approximation 
has been to assume that the reflectometer fluctuation meas-
urements are localized to the cutoff, or the point of reflection 
of the microwaves (e.g. [14, 15]). Specifically, it is assumed 
that the measurements result purely from the motion of the 
cutoff caused by density perturbations in the vicinity of the 
cutoff. However, analysis techniques have been developed 
that seek greater accuracy by combining measurements from 
reflectometers with different frequencies, taking into account 
the nonlocal response of the reflectometers, (see e.g. [16–18] 
for different approaches). Such techniques involve inverting 
the set of reflectometer measurements to obtain a density per-
turbation with a spatial structure and amplitude that simul-
taneously explains all the measurements of the set. Such 
techniques take into account the contribution of propagation 
through the density perturbation along the full path between 
antenna and cutoff. The inversion technique presented here 
seeks to improve upon previously developed techniques of 
this variety. The values of δn obtained via this inversion can 
differ significantly from local approximation estimates. These 
values of δn are valuable because they can be used to derive 
estimates of the mode magnetic perturbation (δb), which can 
then be used in conjunction with theory to predict the contrib
ution of the modes to ion heating, as well as energy transport 
via several different hypothesized mechanisms. In particular, 
these estimates can be used to predict electron thermal trans-
port via electron orbit stochastization [7] and ion heating 
rate via stochastic velocity space diffusion [6]. The inversion 
results can be also used to facilitate prediction of energy trans-
port via coupling of CAEs to kinetic Alfvén waves [9, 10].

Section 2 describes the plasma in which the reflectometer 
measurements were made. Section  3 describes the analysis 
technique developed to obtain δn from the reflectometer meas-
urements and presents the results of the analysis. Section 4 
presents discussion and conclusions.

2.  Plasma conditions

The reflectometry measurements analyzed here [11, 12] 
were obtained in an NSTX deuterium discharge (#141398) 
with a current (IP) of 800 kAmp (figure 1(a)) and a magn
etic field of 0.32 T at the magnetic axis (R0  ≈  1.05 m) that 
was heated with 6 MWs of injected deuterium neutral beam 
power. The temporal evolution of the discharge is shown 
in figure  1, with the time at which the measurements were 
obtained (t  =  580 ms) marked by a dashed vertical line. 
Figure 1(b) shows the injected power (PNB) versus time for 
each of the three sources on NSTX (A: RTAN  =  69.4 cm; B: 
RTAN  =  59.2 cm; C: RTAN  =  48.7 cm). Figure 1(c) shows the 
measured rate (rNEUT) of D–D fusion neutron production from 
a combination of beam–beam and beam-target interactions. 
Figure  1(d) shows the plasma safety factor at the magnetic 
axis (q0) and the flux surface containing 95% of the total 
poloidal flux (q95), obtained by reconstruction of the equilib-
rium magnetic field via the EFIT code using external magn
etic measurements for constraints, as well as partial kinetic 
pressure profile information and a diamagnetic loop measure-
ment [19–21]. Figure 1(e) shows the lower divertor deuterium 
Balmer-α (Dα) emission, which abruptly drops substantially 
around t  =  180 ms due to a transition from L-mode (low con-
finement) to H-mode (high confinement). Figures  1( f ) and 
(g) show the plasma density (ne) and temperature (Te) respec-
tively, from Multipoint Thomson Scattering [22]. In each 
panel, the peak and line average values are shown, where the 
latter is an average over major radius in the plasma midplane.

The density profile of the plasma at the time of the reflec-
tometer measurements is shown in figure 2. As noted in [11, 
12], the reflectometer measurements were obtained with a 
16 channel fixed-frequency array with frequencies spread 
over 30–75 GHz, operating with ordinary-mode polariza-
tion, leading to cutoff densities of 1.1–6.9  ×  1013 cm−3 [11] 
(figure 2). The cutoff positions for O-mode polarized micro-
waves are shown for each of the frequencies in the array used 
for the measurements [11]. The locations of magnetic axis 
(R0  ≈  1.05 m) and last closed flux surface (RLCFS  ≈  1.46 m) 
from EFIT reconstruction of the equilibrium are shown. As 
discussed in [11], the profile shown is a fit to the measured 
ne with a smoothing, or curvature minimizing spline, and the 
ne data is rescaled to best fit observed reflection onset times 
for select channels of the reflectometer array. The rescaling 
is necessitated by a coating on the viewing window used by 
the Multipoint Thomson scattering diagnostic (MPTS). This 
particular time is the focus of the analysis because of the avail-
ability of the MPTS measurements and the unique range of 
reflectometer coverage enabled by the density profile. As can 
be seen in figure 1, central density rises through most of the 
discharge, only beginning to fall after t ~ 1100 ms. The time 
of analysis is the first time in the discharge where MPTS data, 
which is acquired every 16.7 ms, is available and all reflec-
tometer channels are reflecting from the plasma.
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3.  Mode structure analysis technique

The global coherent nature of the CAEs and GAEs is such 
that each mode potentially contributes to many plasma fluc-
tuations, including magnetic fluctuations and reflectometer 
measurements. In particular, NSTX features a toroidally 
distributed array of edge magnetic sensing coils (i.e. ‘b-dot 
coils’) that clearly detect the modes of interest (figure 3(a)), 
which have frequencies in the range f/fci0  ≈  0.17–0.33 
where fci0  =  2.4 MHz is the ion cycltrotron frequency at 
the magnetic axis. Figure  3(a) indicates that the modes 
with f  <  600 kHz are identified as GAEs, while those with 
f  >  600 kHz are identified as CAEs. This identification, based 
on local dispersion relations and measured frequencies and 

toroidal mode numbers, is discussed in detail in [12]. The 
modes are also seen in fixed-frequency quadrature reflectom-
eter measurements [11, 12] as illustrated in figure 3(b). The 
analysis described here exploits the global nature of a mode 
to isolate its contribution to each signal in the magnetic fluc-
tuation measurements, using singular value decomposition 
(SVD). SVD uses the correlations of every measurement with 
every other to find the spatial structure of a global mode as 
well as the common time dependent signal of the mode. The 
common signal isolated from the magnetic measurements is 
used to extract the global mode from the reflectometer sig-
nals through their correlation with the common mode. The 
reflectometer measurements of each mode are then inverted 
using a synthetic diagnostic to obtain the density perturbation 

Figure 1.  Plasma parameters of discharge #141398. (a) Plasma current (IP); (b) neutral beam power (PNB); (c) D–D fusion neutron 
production rate (rNEUT); (d) plasma safety factor at magnetic axis (q0) and 95% poloidal flux surface (q95). (e) deuterium Balmer-α (Dα) 
emission; ( f ) peak and line average plasma density (ne); (g) peak and line average plasma temperature (Te).

Nucl. Fusion 58 (2018) 016051
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amplitude and radial structure of the mode. The final results 
of this analysis are shown in figures 3(c) and 4. The details of 
this analysis are presented below.

3.1.  Isolation of mode contribution to reflectometer  
measurements

Mode structure is determined from the fluctuating contrib
ution, δl, to the microwave optical path length measured by 
each reflectometer. The path length depends on the index of 
refraction, N , which is a function of plasma density. It is given 
by the integral of N  over the path traveled by the microwaves:

l =
∫ xrecieve

xlaunch

N (x′) dx′� (1)

where xlaunch and xreceive are the positions of the launching 
and receiving antennae [23]. The modes perturb the density, 
and thus N , around an equilibrium value, so l is the sum of a 
constant plus a time dependent fluctuating part: l = l0 + δl(t).

The mode contribution to δl can be obtained with aid of 
measurements (δb) from the toroidally distributed array of 
magnetic sensing coils. In broad strokes, the mode contrib
ution to the δl and δb signals is first isolated by bandpass fil-
tering. These contributions are concentrated within a narrow 
spectral band around the mode frequency, as can be seen in 
figures 3(a) and (b), which show spectra of δb from an NSTX 
edge coil and δl from the 75 GHz reflectometer for the same 
time period. Then, the global component of the δb measure-
ments is determined via SVD. Finally, the value of δl for the 
mode is taken to be the part that is coherent with the global 
component of δb. The steps of this analysis are discussed in 
detail below.

Bandpass filtering of the signal from the ith coil yields a 
signal of the form:

δb (t,φi) = δbmode (t,φi) + εi(t)� (2)

where δbmode (t,φi) is the global component and εi(t) is the 
contribution from local background fluctuations, as well as 
any noise. In keeping with the global character of the mode, 
δbmode (t,φi) is expected to have the form:

δbmode (t,φi) = aiδb0(t)cos (ω0t + θ(t) + φi)� (3)

where ω0 is the mode angular frequency, δb0(t) and θ(t) are 
narrow band signals with bandwidth ∆ω � ω0, and ai and φi 
are the relative amplitude and temporal phase shift of the ith 
coil. The global component is the same for every coil except 
for a phase shift and a relative amplitude, which are expected 
to be approximately constant over short periods of time in 
which the plasma equilibrium in relatively unchanging. Over 
longer periods of time, of course, the relative amplitudes and 
phase shifts might be expected to slowly change.

Another point worth noting is the consistency of this form 
with the assumption that global modes in a toroidal device 
are expected to have a sinusoidal structure in the toroidal 
direction due to the symmetry of the plasma equilibrium. 
The coils of the δb array are distributed purely in the toroidal 
direction, so in the absence of any systematic errors in the δb 
measurements, the modes should have φi = nΦi, where n is 

the toroidal mode number, or number of periods toroidally, 
and Φi  is the toroidal location of the ith coil. Also, with equal 
sensitivities for the magnetic sensing coils, the values of ai 
should all be equal. In practice, the sensitivities of the coils 
are not equal and there are breaks in the toroidal symmetry 

Figure 2.  Plasma density profile at t  =  582 ms, with cutoff densities 
marked for each channel of the reflectometer array. Vertical dashed 
lines indicate locations of magnetic axis (R0  ≈  1.05 m) and last 
closed flux surface (RLCFS  ≈  1.46 m). Adapted from [11]. © IOP 
Publishing Ltd. All rights reserved.

Figure 3.  (a) δb spectrum with modes marked; (b) δl spectrum; (c) 
|δn| of modes at R  =  1.15 m (expressed as percentage of ne0 at R0); 
In all panels, symbols Δ or o used for modes with f  >  or  <  600 kHz, 
respectively. Statistical uncertainties shown in (c). Modes with 
f  >  or  <  600 kHz are predominantly CAEs or GAEs, respectively 
[11, 12], as indicated by labeling in panel (c). Panel (a) adapted 
courtesy of IAEA. Figure from [12]. Copyright 2013 IAEA.

Nucl. Fusion 58 (2018) 016051
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of the conducting plasma facing surfaces where the coils are 
mounted, as well as phase shifts introduced by the electronics 
used to record the coil measurements. So, in the SVD analysis 
described below, no assumption is made regarding the values 
of ai and φi. Rather, these values are determined by the SVD 
analysis and the toroidal mode number is then obtained by 
finding the mode number which best fits these values [12].

The next step is transformation of the bandpass filtered 
signals to obtain complex signals using what is sometimes 
referred to as the Hilbert Transformation. Each signal is Fourier 
transformed in terms of complex exponentials, eiωt, and the 
components for ω � 0 are suppressed, while the components 
for ω > 0 are multiplied by 

√
2 to conserved total fluctuation 

power. The result is subject to the inverse Fourier transforma-
tion, yielding time-dependent complex signals of the form:

δb̂ (t,φi) = δb̂mode (t,φi) + ε̂i(t)

where δb̂mode (t,φi) = aiδb̂0(t)ei(ω0t+θ(t)+φi).� (4)

The signals thus obtained are normalized to ensure 〈
|δb (t,φi)|2

〉
=

〈∣∣∣δb̂ (t,φi)
∣∣∣
2
〉

, where 〈〉 represents time 

averaging.

In this form, the set of coil signals δb̂mode (t,φi) and ε̂i(t) 
can be obtained using SVD. In the process δb̂mode (t,φi) is nat-
urally factored into a toroidal spatial structure given by

Ai = ai

∣∣∣δb̂0

∣∣∣ eiφi ,

where
∣∣∣δb̂0

∣∣∣ =
〈∣∣∣δb̂0(t)

∣∣∣
2
〉1/2

� (5)

and the time-dependent global component given by the signal,

Figure 4.  For modes with f  <  600 kHz (GAEs): (a) |δn| versus R, normalized by |δn| at R  =  1.15 m and (b) phase(δn)/π versus R. For 
modes with f  >  600 kHz (CAEs): (c) |δn| versus R, normalized by |δn| at R  =  1.15 m and (b) phase(δn)/π versus R. Symbols indicate 
reflectometer cutoffs. Statistical uncertainties shown in all panels.

Nucl. Fusion 58 (2018) 016051
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sglobal(t) =
δb̂0(t)∣∣∣δb̂0

∣∣∣
ei(ω0t+θ(t)).� (6)

Singular value decomposition solves the problem of factoring 
a spatial array of magnetic fluctuation signals by finding Ai∀i 
and sglobal(t) ∀t  to minimize the squared error function

χ2 =
∑

i

〈∣∣∣δb̂ (t,φi)− Aisglobal(t)
∣∣∣
2
〉

.� (7)

This minimization problem can be rearranged into an eigen-
vector problem for the values of Ai,

Bα = λα

where Bij =
〈
δb̂∗ (t,φi) δb̂ (t,φj)

〉
and ‖α‖ = 1.� (8)

Each eigenvector and its associated eigenvalue, α and λ, can 
be used to construct values, Ai = λ

1
2 αi, that correspond to a 

local minimum of χ2. The global minimum is obtained using 
the eigenvector, αmax, with the largest eigenvalue, λmax. The 
eigenvectors of B are orthogonal, so the global mode signal 
can be constructed from λmax and αmax

sglobal(t) = λ
− 1

2
max

∑
i

α∗
max,iδb̂ (t,φi) .� (9)

Because the magnetic signals used in this analysis are nar-
rowband with a common frequency, the largest eigenvalue 
is typically much larger than the others. If the other, smaller 
eigenvalues are comparable to each other in magnitude, then 
|〈ε̂∗i (t)ε̂j(t)〉| is typically much larger for i = j than i �= j (i.e. 
ε̂ (t,φi) = ε̂i(t) has a short spatial correlation length), as 
expected for non-global noise or background fluctuations. 
If, however, the 2nd largest eigenvalue is substantially larger 
than the others, this suggests there are actually at least two 
distinct global modes contributing to the bandpass filtered 
signals and further analysis, beyond the scope of this article, 
may be necessary to decompose the signals into the indepen-
dent global modes. Of course, if the 2nd eigenvalue is much 
smaller than the largest, then sglobal(t) constructed using λmax 
and αmax gives a reasonable approximation of the dominant 
global mode even in this case.

The complex path length fluctuation for the mode, δlmode, is 
then determined by bandpass filtering and transforming δl(t) 
to a complex signal δ̂l(t) and isolating the part that is coherent 
with sglobal(t). In keeping with the global nature of the mode, 

the signal δ̂l(t) is assumed to be of the form:

δ̂l(t) = δ̂lmode(t) + ε̂δl(t) = Aδlsglobal(t) + ε̂δl(t)� (10)

where Aδl = aδleiφδl is the complex amplitude of δ̂lmode(t) and 
εδl(t) is a contribution from background fluctuations that are 
not global, as well as any noise. The complex amplitude of 
the mode path length fluctuations is then simply obtained by:

Aδl =
〈
δ̂l(t)s∗global(t)

〉
.� (11)

This correlation technique for determination of mode contrib
ution to δl has an advantage over simple bandpass filtering. 

The δl signals typically have relatively large contributions 
from background fluctuations which are captured by the band-
pass filtering along with the contribution from the mode. The 
δb, in contrast, have relatively small background fluctuations. 
This is illustrated in figures 3(a) and (b), where the peak-to-
background ratio of the δl spectrum is much smaller than for 
δb. This correlation technique filters out the residual contrib
ution of the background fluctuations to the bandpass filtered 
δl, leaving only the contribution from the mode.

Since finite length time records are used and limited 
bandwidth is imposed in separating sglobal(t) from ε̂i(t), and 

δ̂lmode(t) from ε̂δl(t), the separation is not expected to be per-

fect and Aδl will have a statistical uncertainty, u (Aδl), which 

can in principle be estimated from 
〈
|ε̂i|2

〉
 and 

〈
|ε̂δl|2

〉
. In 

practice, the contribution from 
〈
|ε̂i|2

〉
 is neglected since, 

as can be seen in figure 3(a), the modes have large peak-to-

background ratios in the magnetic spectrum, so 
〈
|ε̂i|2

〉
 is rela-

tively small. The uncertainty is then given approximately by 

|u (Aδl)|2 ≈
〈
|ε̂δl|2

〉
/Nf , where Nf = τ∆ω—the number of 

frequencies within bandwidth ∆ω for records of length τ—is 
effectively the number of independent measurements used in 
determining Aδl. As an example, these uncertainties are illus-
trated for the f  =  800 kHz mode in figure 6(a).

3.2.  Inversion of mode path length fluctuations

The measurements of path length fluctuations (δl) from the 
reflectometers (defined in previous section) can be thought 
of samples at particular frequencies of a function of micro-
wave frequency (ω), the equilibrium density profile (ne) and 
the density perturbation (δn). Using these measurements and 
knowledge of ne, this function, δl (ω, ne, δn), can be inverted 
with the aid of a synthetic diagnostic to obtain δn. The path of 
the microwaves is approximately along a major radial chord in 
the plasma midplane for all channels of the array, so inversion 
of the measurements yields δn(R), the density perturbation as 
a function of major radius in the plasma midplane from the 
plasma edge to the cutoff location of the highest frequency 
channel.

Using the techniques described in the previous section, 
the contribution of a mode to the array of δl measurements 
can factored in terms an array of complex amplitudes, one 
for each reflectometer, and a complex global time-dependent 
signal common to all the reflectometers. A complex density 
perturbation as a function of R can be obtained for the mode 
by treating the real and imaginary parts of the complex δl 
amplitudes separately. Combining the complex density per-
turbation with the global signal and taking the real part gives 
δn (R, t). The amplitude of the complex density perturbation 
determines the amplitude of δn (R, t), while the phase imposes 
a temporal delay in δn (R, t) that varies with R.

The inversion (for either the real or imaginary parts of the 
complex δl amplitudes) is performed by constructing a model 
δn using a linear combination of basis perturbations:

Nucl. Fusion 58 (2018) 016051
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δn (R) =
∑

i

ciδni (R)� (12)

Coefficients are chosen that best reproduce the set of δl. A 
synthetic reflectometer diagnostic based on a 1D model of 
microwave propagation is used to calculate the expected value 
of δl for each reflectometer assuming the model δn, and the 
coefficients are then adjusted to achieve values that are a good 
fit to the measured δl.

For a perturbed density profile ne (R) = ne (R) + δn (R) 
and microwave frequency ω, the synthetic diagnostic assumes 
path length l (ω, ne) to be given by an integral over the micro-
wave path [23]:

l (ω, ne (R, t)) = 2
∫ Rcutoff(ω,ne)

Rantenna

N (ω, ne (R, t)) dR +
π

2
c
ω

� (13)

where N (ω, ne) is the index of refraction and Rcutoff (ω, ne) is 
defined by the condition N = 0. For the measurements in [11, 

12], O-mode polarization is used, so N (ω, ne) =
√

1 − ω2
p/ω

2 , 

where ω2
p = e2ne/ε0me is the plasma frequency.

In principal, the calculated δl can depend nonlinearly on the 
coefficients of the model δn. However, the measured values of 
δl for the case considered here are small enough that δl can be 
accurately calculated from a linear combination of values for 
the individual basis perturbations. This reduces the inversion 
procedure to solving a linear system of equations.

For the ith basis function δni, the path length fluctuation δli 
is a function of the equilibrium density profile ne and micro-
wave frequency ω , and is calculated using relation:

δli (ω, ne (R)) = δl (ω, ne (R) , δni (R))

=
1
2
(l (ω, ne + δni)− l (ω, ne − δni))� (14)

where the right hand side is evaluated using a small amplitude 
for δni so that δli is approximately linear in the amplitude. 
The integrals are evaluated using the Matlab quadgk routine, 
which implements adaptive quadrature integration based on a 
Gauss–Kronrod pair (15th order Kronrod and 7th order Gauss 
formulas) [24].

Taking into account the construction of the model δn 
(equation (12)), the path perturbation for the jth reflectometer 
δl (ωj, ne, δn) is given by:

δl (ωj, ne (R) , δn (R)) =
∑

i

ciδli (ωj, ne (R)) .� (15)

For the purposes of the numerical integration, the equilibrium 
density function, ne is implemented with a cubic-spline inter-
polating the measurements from MPTS (figure 2).

To simplify interpretation of δn, the basis density perturba-
tions, δni, are derived by convection of the equilibrium density 
profile using a basis set of major radial displacement perturba-
tions di:

δni (R) = −di (R)∇ne (R) .� (16)

With this approach, after the coefficients ci have been deter-
mined from the measurements it is a simple matter to recon-
struct the displacement profile of the equilibrium density 
profile that produces δn:

d (R) =
∑

i

cidi (R) .� (17)

It should be noted that d  is a displacement of the equilibrium 
density contours in the major radial direction. In general, d  is 
not equal to the plasma fluid displacement in the major radial 
direction, ξ · R̂, (e.g. the E  ×  B displacement) except when 
the density perturbation is incompressible and the density 
gradient scale length is much shorter than the major radius. 
This is clearly not the case for CAEs. However, for GAEs in 
the edge region where the density gradient is large, d (R) is 
potentially a useful approximation of ξ · R̂. As discussed in 
section 4, fluid compression contributes to δn, and thus to d . 
This is true even for shear modes, where geodesic compres-
sion results from fluid displacement along the gradient of B0 
[25, 26].

The set of basis displacement perturbations used are cubic 
(i.e. ‘4th order’) normalized B-splines [27] with knots at the 
magnetic axis (R0  ≈  1.05 m), the cutoff locations of each 
channel (see figure  2) and the plasma edge (R  =  1.5 m). 

Figure 5.  Basis (a) displacement perturbations and (b) density perturbations.
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Figure 5(a) shows the basis displacement perturbations and 
figure 5(b) shows the derived basis density perturbations used 
in constructing δn. Cubic splines can be fully specified by pro-
viding values at the knots and the slope at each endpoint. For 
purposes of this inversion technique, only a subset of the cubic 
normalized B-splines for the given knots is actually used. The 
subset is chosen to ensure by construction that δn  =  0 and 
d(δn)/dR  =  0 at the endpoints (R0 and R  =  1.5 m). These con-
ditions are chosen because they are easily implemented and 
they allow the slope and value of δn at each of cutoff locations 
for the array to vary relatively freely when fitting the meas-
urements. However, while these conditions serve as a useful 
starting point for development of the inversion technique, 
they merit further consideration in future work. Although the 
choice to enforce δn  =  0 at R  =  1.5 m is relatively easy to 
motivate, the physical motivation for the other boundary con-
ditions warrants further consideration.

The inversion is sensitive to short scale structure in 
δl (ω, ne, δn). (δl (ω, ne, δn) can be treated as a function of R 
for a given ne profile by mapping ω  to R through the relation 
R = Rcutoff (ω, ne).) Small random errors in the measured δl, 
which can introduce substantial unphysical short scale struc-
ture, can translate to large errors in the reconstructed δn. This 
concern is addressed by smoothing the measured δl prior to 
the reconstruction as much as justifiable taking into account 
the statistical uncertainties of the measurements.

The smoothing is performed by treating the set of 
δl (δn, ne,ωj) versus Rcutoff (ne,ωj) as measurements of a func-
tion of R and finding a best-fit cubic spline while imposing 
a penalty for excessive curvature [28]. In particular, a cubic 
spline is chosen to have minimum curvature subject to the 
constraint that the r.m.s. uncertainty-weighted difference 
between fitted and measured δl is less than ~1. The set of 
knots and boundary conditions for the smoothing spline are 
different from those used for the cutoff displacement. The 
knots include only the cutoff locations and the plasma edge, 
R  =  1.5 m. The slope at the plasma edge, R  =  1.5 m, is con-
strained to be 0, motivated by the assumption the plasma edge 
is displaced rigidly by the mode. The slope at the innermost 
knot and the value of the spline at the plasma edge, R  =  1.5 
m, are chosen to minimize overall curvature of the spline. 
(These values implicitly depend on the values of the spline at 
the other knot points.)

It is worth noting that smoothing can also be physically 
motivated by the observation that for CAEs, which are com-
pressional Alfvén waves confined in the plasma, short scale 
structure should lead to high frequency. While this considera-
tion does not inform the smoothing method employed here, in 
principle it could, but that is left to future work.

When the values of δl from the smoothed spline are 
inverted, a much smoother δn results. As an example, the 
results of the smoothing for the f  =  800 kHz mode are illus-
trated in figure 6. Figure 6(a) shows the raw measured and 
smoothed δl (δl is shown in terms of effective displacement, 
deff =

δl
2 ). The contrast in the results of inverting the smoothed 

and unsmoothed δl is illustrated in figure  6(b). Notably, δn 
from the unsmoothed δl exhibits large amplitude oscillations 
in the plasma edge (R  >  1.35 m) that are absent in δn from 

the smoothed δl. While it might be natural to suspect that 
the smoothing procedure is suppressing real structure in the 
resulting δn, it is not actually possible to know whether that 
structure is real, given the measurement uncertainties. This is 
clearly illustrated by noting that despite the large edge δn dif-
ferences, the smoothed δl in the edge deviates from each δl 
measurement by less than its statistical uncertainty.

For comparison with deff , figure  6(a) also shows the 
cutoff displacement, d, obtained from the inversion for the 
f  =  800 kHz mode. As discussed in [11, 12], deff  can serve as 
an estimate for cutoff displacement, albeit a cruder one than d . 
The value of deff estimates the cutoff displacmement using the 
‘mirror approximation’, in which δl is assumed to be due to 
motion of the cutoff caused by δn in the vicinity of the cutoff. 
This approximation is most accurate in the limit of long radial 
wavelength, when the mode rigidly displaces the plasma radi-
ally. Note that d is much larger than deff . This has potentially 
significant implications which are discussed below.

Statistical uncertainties for the measured δl (calculated as 
described above in section 3.1) are propagated to obtain sta-
tistical uncertainties (not shown) for the smoothed δl, making 
the reasonable assumption that the background fluctuations 

Figure 6.  (a) Measured and smoothed deff (i.e. δl/2) for the 
f  =  800 kHz mode and, for comparison, d obtained from smoothed 
δl; statistical uncertainties for the measured deff are smaller than the 
plot symbols; (b) δn from inverting the smoothed and unsmoothed 
δl, normalized by ne0 at the magnetic axis.
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measured by each channel are uncorrelated. These uncertain-
ties are then propagated to obtain uncertainties for δn and 
d. Examples are illustrated for the f  =  800 kHz mode in fig-
ures 6(a) and (b). Figure 3(c) shows uncertainties in the ampl
itude of δn for all modes at the innermost cutoff, R  =  1.15 m. 
For many modes, the uncertainties are smaller than the plot 
symbols.

3.3.  Results of mode isolation and inversion

The results of the inversion for the modes seen in figures 3(a) 
and (b) are shown in figures  3(c) and 4. Figure  3(a) shows 
the spectrum of edge magnetic fluctuations, marked to show 
15 modes found [11, 12] to be predominantly GAEs for 
f  <  600 kHz and CAEs for f  >  600 kHz. Figure  3(b) shows 
the δl spectrum of the highest frequency reflectometer, with 
corresponding peaks for the modes. Figure 3(c) shows |δn| at 
R  =  1.15 m, normalized by equilibrium density (ne0) at the 
magnetic axis. Figures 4(a) and (c) show |δn| versus R for each 
mode normalized using |δn| at R  =  1.15 m to facilitate com-
parison of structures. Figures 4(b) and (d) show phase (δn) /π  
versus R for each mode, where phase (δn) is the temporal phase 
of the δn (R) relative to δn (R = 1.15 m). Figures 4(a) and (b) 
show modes with f  <  600 kHz (GAEs), while figures 4(c) and 
(d) show modes with f  >  600 kHz (CAEs). (The magnetic 
axis is R0  ≈  1.05 m and the plasma edge is R  =  1.5 m). (Note 
that [12] reported a cutoff location for the deepest channel 
of R  =  1.16 m, based on a density profile using unsmoothed 
MPTS measurements. The cutoff locations in figure  4 are 
based on the smoothed profile shown in figure 2.)

The CAEs tend to have δn with larger amplitude in the 
plasma core than in the edge, while the opposite tends to be 
true for the GAEs. The temporal phase of δn varies signifi-
cantly from core to edge (as much as π) for most modes. The 
modes with f  >  600 kHz tend to feature distinct |δn| peaks in 
both the core and edge of the plasma, with the latter being much 
lower amplitude. In contrast, the modes with f  <  600 kHz tend 
to have low amplitude, relatively flat core |δn| profiles with 
large amplitude peaks in the edge. Edge localized peaks are 
seen in the structure of all modes. The peaks occur in the ped-
estal, likely resulting from the structure of the equilibrium 
density profile, which has steep gradient in the pedestal region 
(R  ≈  1.41 m–1.5 m). Even a small radial plasma displacement 
in the pedestal can cause a large density perturbation there.

As noted above, the inversion technique yields not just δn, 
but also density contour radial displacement, d = −δn/∇ne. 
Table 1 lists values of δn/ne0 and d for the modes shown in 
figure  3(c), along with the effective displacement, deff (i.e. 
δl/2) (from [12]) for comparison, at R  =  1.15 m. (Note, the 
value of ne0 is given by the maximum of the the density pro-
file, ne (R) , in figure 2: ne0  =  7.25  ×  1019 m−3.) Recall from 
the previous section that deff is an estimate of the cutoff dis-
placement using the mirror approximation. Table 1 also shows 
the measured mode frequencies and toroidal mode numbers of 
the modes (also from [12]) for reference. As can be seen from 
table 1, the displacements from the inversion are larger than 
deff by a factor of ~2–4. This is also illustrated graphically in 

figure 7, which shows the ratio, d/deff for each of the modes. 
The values of d are likely larger than deff because δn tends to 
be small between the edge and the core for all the modes, and 
while deff is determined in part by the motion of the cutoff, 
there is also contribution from the weighted average of δn 
along the path, where the weighting deprecates the signifi-
cance of the edge peak.

4.  Discussion

The values of δn (or d) allow for estimates of plasma fluid dis-
placement (ξ)—which can be related to the electromagnetic 
perturbation associated with the mode—using the continuity 
equation:

δn/ne = −∇ · ξ− ξ · ∇ln (ne) .� (18)

The electromagnetic perturbation is necessary for a variety 
of purposes, including, for instance, to simulate the effects 
of the modes on electron orbits and the resulting electron 
thermal transport (as in [7]). With physically reasonable 
assumptions typical for global magnetohydrodynamic waves, 
it can be shown that:

∇ · ξ = −δb‖/B − 2ξ · ∇ln (B)− 1
2
βξ · ∇ln ( p)� (19)

where β = p/
(
B2/2µ0

)
. The term 2ξ · ∇ln (B) is sometimes 

referred to as the geodesic [25] or ideal MHD [26] compression 
effect. In particular, equation (19) holds true if the equilibrium 
magnetic field is in force balance with an isotropic plasma 
pressure (J × B −∇p = 0), plasma fluid displacement is 
due to E  ×  B motion (ξ = δE × B/

(
−iωB2

)
), the electric 

field perturbation has no parallel component (δE · B = 0) and 
the time derivative of δE can be neglected in Ampère’s Law 
(∇× B = µ0J). It can be shown from equations (18) and (19) 

Table 1.  Measured frequency, toroidal mode number (n) (see 
figure 2, [12]), density fluctuation (δn/ne0), displacement (d) and 
effective displacement (deff) (see figure 1(b), [12]) of modes shown 
in figure 3(c).

Freq. (kHz) n δn/ne0 (10−4) d (mm) deff (mm)

383 −8 0.58 0.11 0.04
393 −7 0.65 0.12 0.05
401 −8 0.78 0.15 0.06
436 −7 0.70 0.13 0.05
491 −8 0.37 0.07 0.03
515 −7 1.13 0.22 0.06
563 −6 0.30 0.06 0.03
567 −8 1.37 0.26 0.06
602 −5 1.74 0.33 0.09
633 −4 6.75 1.28 0.30
648 −1 6.20 1.18 0.40
695 −5 1.48 0.28 0.08
720 0 2.05 0.39 0.12
726 −3 2.77 0.53 0.30
800 −4 1.91 0.36 0.13
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that, assuming δb‖/B is negligible, the density contour dis-
placement (d) is related to ξR = ξ · R̂ in the plasma midplane 
by:

d =

(
1 −

2∂ln (B) /∂R + 1
2β∂ln ( p) /∂R

∂ln (ne) /∂R

)
ξR.� (20)

The various proportionality factors from the equilibrium pro-
files in equations (18) and (19) that relate the plasma fluid dis-
placement (ξ) to the density perturbation (δn/ne) are shown 
in figure 8. The total of all the proportionality factors is also 
shown. The profiles of p and β used in figure 8 are determined 
from EFIT equilibrium reconstruction [19, 20] taking into 
account measurements of electron density and temperature 
from MPTS and ion density and temperature from charge 
exchange recombination spectroscopy [29]. The reconstruc-
tion also allows for fast-ion pressure, loosely constrained by 
fast-ion pressure from TRANSP modeling [20].

It should be noted that for high aspect ratio tokamaks, 
where B ∝ 1/R and β � 1, further simplification would be 
possible, leading to [26]:

δn/ne ≈ b̃‖/B − 2ξ · R̂/R − ξ · ∇ln (ne) .� (21)

However, neither of these approximations is valid for the dis-
charge under consideration. The poloidal magnetic field can 
be comparable to the toroidal magnetic near the plasma edge, 
so B ∝/ 1/R. Also, β is large (β ~ 70% at the magnetic axis) 
and |(β/2)∇ln ( p)| ∼ |∇ln (ne)| for most of the plasma, as 
can be seen in figure 8.

Another assumption that must be considered carefully 
for the high frequency modes under consideration is that 
the plasma fluid displacement is purely from E  ×  B motion. 
The modes have frequencies in the range f/fci0  ≈  0.17–0.33, 
so finite frequency effects that are typically neglected in 
the approximation ξ = δE × B0/

(
−iωB2

0

)
 may be impor-

tant. Specifically, the fluid displacment will have a contrib
ution from polarization drift that is smaller than the E  ×  B 

displacement by a factor of ω/ωci. This extra component will 
contribute to ∇ · ξ fundamentally differently. For the pur-
poses here of evaluating mode impacts on heating and energy 
transport, this extra component will be neglected since the 
correction to ξ is less than 30%, which is unlikely to change 
the fundamental conclusions, as will be seen.

It is interesting to note that that for a peaked density and pres
sure profile, and for B decreasing with R, the ∇ln (ne) term in 
equation (18) competes with other gradient terms entering equa-
tion  (18) through the ∇ · ξ term. For modes with negligible 
δb‖/B, E  ×  B displacement should cause vanishingly small 
δn/ne at some R in the midplane on the low magnetic field side of 
the plasma. For this discharge, that occurs at R  =  1.28 m (figure 
8). Many of the GAE mode structures in figure 4(a) do not show 
a strong amplitude minimum, while others show a minimum 
around R ~ 1.35 m–1.4 m. This suggests that these modes may 
have significant δb‖/B around R ~ 1.3–1.4 m, or that the polari-
zation drift contribution to ξ is not negligible there, causing the 
minimum to not appear or to shift location. GAEs in simulations 
[10] of the Hybrid MHD (HYM) code show significant δb‖/B 
on the low field side, so this is not unexpected.

One application of the inversion results shown in table 1 
is to make an improved comparison of experimental GAE 
amplitudes with the threshold predicted by [7] to explain the 
anomalous electron thermal transport typical of discharges 
like the one in which the inverted reflectometer measurements 
were obtained. A previous attempt at the comparison was 
made in [12], using the values of deff for GAEs (f  <  600 kHz) 
shown in table  1. Using the values of δn/ne0 from table  1 
instead, along with equations  (18) and (19), it is possible 
to make a more accurate comparison with the predicted 
threshold. At R  =  1.15 m, the measurement location for the 
values in table 1, the proportionality factors for equations (18) 
and (19) that are shown in figure 8 are −∇ln (ne) = 0.6 m−1, 
(β/2)∇ln ( p) = − 0.5 m−1, and 2∇ln (B) = − 1 m−1, for 
a total of −0.9 m−1. Also, it is worth noting that the density 
at R  =  1.15 m is ne  =  7.0  ×  1019 m−3, while the values of δn 

Figure 7.  Ratio of density contour displacement from inversion, d, 
to effective displacement, deff, at R  =  1.15 m. Symbols Δ or o used 
for modes identified as CAEs or GAEs respectively.

Figure 8.  Dashed lines show various proportionality factors in 
equations (18) and (19) from equilibrium profiles relating plasma 
fluid displacement (ξ) to density perturbation (δn/ne). Solid line 
shows total of all factors.
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in table 1 are normalized to the density at the magnetic axis, 
ne0  =  7.25  ×  1019 m−3.

Reference [7] presents modeling of electron drift orbits 
in the presence of multiple modes showing that at sufficient 
amplitude, the orbits are stochastized, leading to enhanced 
electron thermal diffusivity (χe). The threshold amplitude is 
expressed in terms of the parameter α = δA‖/B0R0, where 
δA‖ is the parallel component of the perturbed vector poten-
tial. To explain the anomalous electron thermal transport, 
at least 16 modes are required, each with an amplitude of 
α0 � 4 × 10−4, for a total amplitude of > 6 × 10−3. In 
[12], values of α were calculated from the values of deff 
for each GAE using the measured frequencies and toroidal 
mode numbers in table 1, and the GAE dispersion relation. 
This yielded a total amplitude of 3.4 × 10−4, which falls 
well below the threshold. (Note that [12] mistakenly com-
pared the total experimental GAE amplitude to the predicted 
per-mode threshold α0 = 4 × 10−4, incorrectly concluding 
that the modes reached the predicted threshold.) Using 

the values of δn/ne0 from table  1 instead of deff to calcu-

late α for each mode, and assuming b̃‖/B is negligible for 
the GAEs, which are shear-like eigenmodes, yields a total 
GAE amplitude of 6 × 10−4. This is ~75% larger, but still 
well below the threshold, so the GAEs amplitudes are not 
large enough to explain the transport. Note that the polariza-
tion drift contribution to ξ is neglected as discussed above 
because the total GAE amplitude is a factor of 10 below the 
threshold. Accounting for it would be unlikely to change the 
conclusion. The modeling in [7] showed the thermal diffu-
sivity to have a strong nonlinear dependence on amplitude 
(χe ∝ αc, c = 3 − 6), so the factor of ~10 difference between 
the experimental amplitude and the threshold makes an enor-
mous difference in the expected diffusivity. It should also be 
noted that as discussed in [12], the number of GAEs is also 
well below the predicted threshold for causing the transport.

The contribution of the CAEs (f  >  600 kHz) was not 
included in the comparison above since the theory for the 
diffusion enhancement in [7] has not yet been extended to 
include modes of compressional polarization. However, it is 
worth considering how those modes would contribute if they 
were, in fact, GAEs (i.e. if they had been misidentified in [11, 
12]). Using the values of δn/ne0 for all modes in table  1 to 
calculate α yields a total amplitude of 9 × 10−4. This is not 
that much larger than for just the modes with f  <  600 kHz, 
so the total mode amplitude would still fall well below pre-
dicted threshold for causing the transport, even though the 
total number of modes would be high enough. Notably, the 
values of δn/ne0 for the modes with f  >  600 kHz tend to be 
larger than those with f  <  600 kHz. However, this is offset 
in the calculated values of α for these modes by the depend
ence of α on poloidal mode number (m), which is α ∝ m−1. 
The higher frequencies and lower toroidal mode numbers of 
these modes leads to higher values of m inferred from the 
GAE dispersion relation. While the modes with f  <  600 kHz 
have |m| ∼ 1/2 − 2 1

2, as indicated in [12], the modes with 
f  >  600 kHz have |m| ~ 4–11.

The inversion results also have implications for another 
important hypothesized core energy transport mechanism, 
coupling of CAEs to kinetic Alfvén waves (KAW) [9, 10]. 
Simulations of CAEs using the HYM code showed sig-
nificant energy electromagnetically transported across the 
plasma by the modes. Specifically, the simulations showed 
that CAEs take energy from the core localized beam ions 
that excite them (thus diverting energy from core heating) 
and deposit the energy in the outer part of the plasma via 
coupling or mode conversion to KAWs, which are highly 
dissipative. The energy transported is proportional to the 
square of the mode amplitude. Using the experimental 
values of deff from [12] to set the amplitude of the modes, 
the energy transported by the CAEs in the experiment was 
estimated in [9, 10]. (The values of deff from [12] are also 
shown in table 1, where CAEs are modes with f  >  600 kHz.) 
Specifically, the values of deff were used to set the amplitude 
of the simulated plasma displacement perturbation and all 
other associated mode perturbations were scaled accordingly, 
yielding δb‖/B0 ~ 0.9–3.4  ×  10−3. Since CAEs are com-
pressional and the profile gradients in the core are shallow, 
it is clear from equations  (18) and (19) that the approx
imation δb‖/B0  =  δn/ne can be used instead. Using δn/ne0 
from table 1 and ne0/ne  =  1.04, it can be seen that δb‖/B0 in 
the experiment is actually much smaller (e.g. at f  =  648 kHz, 
δn/ne  =  (δn/ne0)(ne0/ne)  =  (6.2  ×  10−4)(1.04)  =  6.5  ×  10−4 
� 3.4  ×  10−3) suggesting that the energy transport by 
CAEs is significantly over-predicted in [9, 10]. For instance, 
the simulations showed that a nonlinearly saturated n  =  4 
CAE with δb‖/B0 ~ 6.6  ×  10−3 would lose 1.2 MW through 

the coupling to KAWs. Assuming that the lost power scales 

simply as δb2
‖, as is done in [10], and that the scaling is the 

same for all CAEs, the CAEs in table 1 would collectively 
lose ~0.03 MW. It is also worth noting that the experimental 
amplitudes are much smaller than the CAE saturation ampl
itude in the nonlinear simulations discussed in [9, 10], high-
lighting a potentially fruitful area for further development of 
the physics model of HYM.

Another area in which the inversion results can be exploited 
is to assess whether the CAEs in the experiment would be 
expected to cause significant ion heating [6]. Reference [6] 
presents the results of full-orbit simulations of thermal ions 
in the presence of multiple CAEs, showing heating via sto-
chastic velocity space diffusion. The ion heating rate is pre-
dicted versus mode amplitude in terms of δb⊥/B0. The CAE 
amplitudes in the experiment (f  >  600 kHz) have values in the 
range 2  ×  10−4  <  δb‖/B0  <  7  ×  10−4, which can be used to 
estimate the range of values for δb⊥/B0. Using the assumed 
valued of k‖/k⊥ from the simulation, 0.2 < k‖/k⊥ < 0.5, 

and the approximations δb‖/B0  =  δn/ne and δb⊥/B0 ~ 
k‖
k⊥

δb‖
B0

, 

gives 0.4  ×  10−4  <  δb⊥/B0  <  3.5  ×  10−4. This implies a rel-

atively insignificant heating rate of dTi/dt  <  ~ 1 keV s−1. For 
the discharge where these modes are observed, Ti ~ 900 eV, so 
Ti/(dTi/dt) ~ 1 s, which is much greater than the energy con-
finement time for the discharge. Also, of course, this heating 
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rate is actually an upper bound since the simulation assumes 
21 modes, many more than the 7 observed CAEs in this dis-
charge. Reference [6] does not discuss the dependence of the 
heating rate on number of modes.

5.  Conclusions

In summary, analysis of reflectometry measurements is per-
formed for CAEs and GAEs observed in an NSTX-U high 
power beam-heated discharge using a novel technique that 
inverts the measurements to obtain the density perturbation 
structure and amplitude of the modes. The results of inver-
sion have multiple potential impacts including understanding 
the role of CAEs and GAEs in ion heating [6], energy trans-
port [9] and anomalous electron thermal transport [7, 12]. It 
is found, for instance, that the results of the inversion yield 
cutoff displacements (d) larger than the mirror approximation 
estimates (deff) reported in [12]. However, even taking into 
account the larger values for cutoff displacement, the GAEs 
in the discharge considered have do not have sufficient ampl
itude to explain the anomalous electron thermal transport typ-
ical for the kind of discharge in which they were observed. It 
is also found that previous predictions of energy transport by 
CAEs [9, 10] likely over-predict the energy transport and that 
the CAEs have sufficiently low amplitudes to expect insignifi-
cant ion heating [6].
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