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ARTICLE INFO ABSTRACT

Distributing control mechanisms across modern commercial off the shelf (COTS) GNU/Linux systems often in-
troduces difficult to mitigate non-deterministic behavior. Existing methods to address this problem involve non-
real-time technologies such as Remote Direct Memory Access (RDMA) over Infiniband or custom Ethernet so-
lutions, such as RDMA over Converged Ethernet (RoCE) or userspace Ethernet drivers, that trade determinism for
ease of use or lower cost. The National Spherical Torus Experiment Upgrade (NSTX-U) is pursuing a new design
that allows direct communication between heterogeneous systems with scalable, microsecond latency with 1 ps
of jitter on that latency, outside of the constant transmission delay at the physical layer. The future design of the
NSTX-U Real-time Communication System will utilize direct PCle-to-PCle communication with kernel support
tuned for low overhead, allowing two (or more, through a switch) real-time (RT) systems to communicate and
share resources as one larger entity. This greatly increases the processing capability of the primary Plasma
Control System (PCS), turning previously insurmountable computational challenges into a more manageable
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divide and conquer parallel task.

1. Introduction

The National Spherical Torus Experiment Upgrade (NSTX-U) project
is a fusion experiment hosted at the Princeton University Plasma
Physics Lab whose mission [1] requires advanced real-time control [2].
Recent upgrades to the device have increased the capabilities of the
experiment, and new, more sophisticated control solutions will be cri-
tical to achieving the physics goals of the experiment and maximizing
performance. These future goals for the control systems [3-5,14,15]
necessitate expanding the computational capacity and flexibility of the
existing systems in a scalable fashion. Currently under investigation is
the use of remote memory access across external PCle interfaces as a
deterministic, low-latency communication mechanism between het-
erogeneous commercial off-the-shelf (COTS) computers running a
general purpose, real-time capable GNU/Linux operating system.

Historically, the system designs in use on NSTX-U have refrained
from distributed computing to avoid the overhead of moving data be-
tween nodes, instead opting for an ever increasing core count within a
single node. The current Plasma Control System (PCS) computers use 64
Advanced Micro Devices (AMD) Opteron 6386 SE cores in a single host
[2], which is enough to meet all current needs. Plans for future com-
putational tasks, however, are exceeding the growth curve of the
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processing that can fit into a single computer. Outside of special pro-
prietary motherboard designs that allow for eight CPU sockets, there is
no practical COTS hardware vendor supporting more than four CPUs for
a single system installation. The new real-time communication design
will instead enable coupling multiple 64-core nodes into a larger overall
system of computers that can grow over time like existing switched
fabric solutions, but with the determinism present in the single-mono-
lithic-system approach.

1.1. NSTX-U plasma control system

The NSTX-U Plasma Control System (PCS) shown in Fig. 1 is a
combination of hardware, firmware, and software that performs con-
figuration, data acquisition, transport, processing, actuator output, and
archiving of measured and calculated data during each experimental
test. The primary physics connection to the experiment’s sensors and
actuators uses the VITA 17.1 Front Panel Data Port (FPDP) protocol, a
highly efficient mechanism developed originally for Versa Module
Europa bus (VMEbus)-based systems but now available in many en-
vironments.

PCS nominally runs through a 12s real-time event, or “pulse”,
processing inputs and outputs synchronously at a 5 kHz rate. Before the
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Fig. 1. High level PCS layout with proposed additional RT computer.

pulse, there is a period of configuration and preparation, followed by a
controlled countdown to the start of this real-time event. The actual
pulse transitions from plasma initiation, through a ramp-up to target
experimental plasma conditions, into a multi-second experimental
phase, followed by a plasma ramp-down and ultimately the termination
of the sequence. There are approximately 30 different algorithms run-
ning on a single real-time computer that control many aspects of the
pulse, including the power supplies that drive the magnetic coils, the
gas injection system that puffs gas into the machine, and the neutral
beams that provide heating. There is an identical twin computer that
serves as a development system running in parallel with the live system.
In total, the PCS generates about 2 GB of data for each pulse [2].

The PCS algorithms run inside a real-time framework created by
General Atomics [6] which is in use on several experiments around the
world: DIII-D, NSTX-U, MAST-U, Pegasus, KSTAR [11], and EAST [7].
Its widespread use fosters easy collaboration both in improving the
framework and in sharing algorithms developed to run using it. The
framework provides many service abstractions that allow a given in-
stallation to tailor it to specific applications while utilizing a common
API. For example, it supports multiple ways to acquire data, convert it
from low-level I/0 to physics terms, and eventually archive it in a site-
specific format such as PTDATA or MDSplus.

1.2. PCS expansion

The real-time control computer is a shared system that also houses
protection software known as the Digital Coil Protection System
(DCPS). “Protection” in this context differs from “control” in terms of
the goals and restrictions of the software. The stricter rules guiding
protection software are primarily driven by the physical consequences
of failure, and they tend towards a cautious approach. Accordingly,
changes in control software tend to be more frequent and less rigorously
tested to facilitate more aggressive scientific research.

DCPS occupies roughly half of the computational cores, leaving the
other half available for PCS [8]. The current set of PCS algorithms
utilize most of their allotted cycle time on the remaining cores, moti-
vating the need for expansion beyond the capabilities of a single system.
Adding additional nodes as indicated in Fig. 1 requires some amount of
communication between PCS processes, and the framework facilitates
this effort in a relatively general way. It has built in functionality to
support moving data between processes regardless of their location
(local to the computer or remotely on separate host) and independent of
the underlying communication method.

There are two higher level abstractions available from the frame-
work for this purpose: a communication buffer and a real-time message
(RTM). The backing store for an RTM, while customizable, defaults to
System V style shared memory regions. Sharing these between pro-
cesses on a local host is obviously simple; sharing these between nodes
requires some other mechanism to detect and propagate changes.

It turns out that this design maps well to typical implementations of
reflective memory systems. Generally, they involve mapping a region of
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memory and instructing the transport mechanism to handle change
propagation automatically. Accordingly, DIII-D, KSTAR, and MAST-U
have successfully used reflective memory in some fashion through this
generic RTM interface [9] with different underlying technologies per-
forming the work. NSTX-U is now exploring a new technology to
achieve similar functionality with highly deterministic results and peak
performance.

2. Technology background
2.1. Reflective memory

Reflective memory technology first appeared in the 1980s for use in
VMEbus environments, produced by VME Microsystems International
Corporation (VMIC). General Electric bought VMIC and later sold it to
Abaco Systems, who still produces reflective memory products in use at
the National Fusion Research Institute on KSTAR. Other competitors
include Curtiss-Wright, who produces SCRAMNet, and previously
(though no longer) Myrinet, which was in use at General Atomics on
DIII-D.

Each provider offers potentially different features. There is no spe-
cific “Reflective Memory” standard produced by a governing body, but
instead a loose set of common, high level traits. A reflective memory
system will typically include a vendor specific physical layer, dedicated
I/0 cards, and software interfaces that hide the underlying commu-
nication. The system should handle replicating changes to memory
regions between hosts without user involvement and with minimal
system overhead. In some cases, hosts have access to knowledge of
memory location, whether local or remote, and can use this knowledge
to make efficient storage decisions. Reflective memory products typi-
cally support mesh-type, many-to-many connections, allowing multiple
endpoints to communicate easily. Point-to-point setups do exist, how-
ever, and may be advantageous in applications with few hosts and
limited budget.

2.2. Remote direct memory access

Remote Direct Memory Access (RDMA) is a more formal and com-
paratively recent refinement of reflective memory. A key difference is
the existence of a consortium that defines various protocols in terms of
IETF RFCs. Since these protocols are agnostic of the lower layer com-
munication methods, it is possible to use RDMA over an existing
InfiniBand or EtherNet network to access memory regions between
hosts. The OpenFabrics Alliance promotes these uses of RDMA proto-
cols.

RDMA standards add guarantees that memory access from a remote
host will not involve the CPU or the OS on the local host (or vice versa).
The “direct” in RDMA signifies the ability of the I/0O card to interact
with memory regions without first copying data to and from the con-
ceptual CPU core. To be pedantic, a modern CPU includes the memory
controller on the die itself and communicates to it via localized high-
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speed methods. From the perspective of the OS kernel, however, the
CPU core itself does not process any instructions to move this data
between an I/0 device and main memory. In multiprocessor systems, a
core accessing an RDMA region may still invoke latencies due to Non-
Uniform Memory Access (NUMA) locality.

A typical use of RDMA would be to assemble a cluster of relatively
inexpensive computers connected via InfiniBand that are visible to the
user as a single entity. Using RDMA, the user could conceivably dis-
tribute processing across the cluster and share data transparently by
reading and writing to shared memory regions mapped by the RDMA
mechanism. A process on Host A, for example, could then read the
output of a process on Host B without the CPU on Host B taking any
additional action outside of storing the result in memory.

2.3. Dolphin PCle bridge

Dolphin Interconnect Solutions has combined the concepts of RDMA
and Reflective Memory with their previous work in both the PCI and
PCle standards to create a product that connects multiple computers
using native PCle itself. They leverage the power and capability of this
efficient lower level interface to deliver RDMA compatible technologies
with significantly better performance characteristics. While this is a
proprietary product in general, the underlying infrastructure is based
on open standards that can interact with other compatible products to
sustain future growth.

In the Dolphin design, hosts can communicate via a stackable
switched fabric or in a direct point to point fashion using copper or
fiber. The switch allows many devices to exchange data at full PCle
speeds, while the point to point setup allows up to three in a star
configuration. The maximum throughput at PCle Generation 3 speeds
with all 16 links is 128 Gbps with only 1.54% overhead due to the use
of PCIle Gen3 128B/130B encoding. This greatly dwarfs the throughput
of other technologies and significantly opens the operating space for
real-time communications.

The Dolphin products enable more capability than just reflective
memory or RDMA. Since the underlying communication mechanism
involves a standardized PCle bus extension, they additionally provide
advanced PCle device sharing features that bypass the CPU similarly to
RDMA. Just as separate hosts can access remote memory across the
PCle bus, they can also access remote devices directly without involving
the remote CPU. The latency of this device sharing is similar to memory
sharing, limited only by physical distance and scaling linearly with data
size. It is a possible future scenario where an NSTX-U realtime computer
accesses a farm of GPU cards spread across multiple computers for
calculating advanced predictive models in real-time as extra inputs for
control algorithms. Dolphin-based device sharing would allow housing
the GPU cards remotely while accessing them as if they were all housed
locally.

3. Testing platform

All conducted tests were point to point between two systems with
identical operating environments. The differentiation in the test com-
puter setups being AMD vs Intel is purely a factual description of the
components available for testing and not meant to indicate a branding
preference. Where possible, references are instead to the Gen2 and
Gen3 PCle support, which is the largest performance driving limitation.

3.1. Operating environment

NSTX-U uses a real-time operating system provided by Concurrent
Real-Time called RedHawk Linux. It is derived from CentOS, tuned for
determinism, and combines a modified kernel and drivers with devel-
opment tools to provide a complete real-time environment. The kernel
modifications deliver better determinism capabilities than those avail-
able with the PREEMPT RT patches provided by http://rtwiki.org/
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[2,8,12].

The OS version in use for this testing was an unmodified 64-bit 7.2
release. There were no issues identified during testing that required
driver source modifications, thus the drivers for the Dolphin card were
also unmodified and are available from the vendor. All real-time ap-
plications made use of CPU shielding, a RedHawk feature provided that
gives exclusive CPU core access to a specific process, blocking all other
processes, interrupts, and timers from running there.

3.2. Existing AMD systems (Gen2)

NSTX-U has had for several years now a powerful real-time system
using 64 AMD Opteron 6386 SE cores across 4 CPUs running at
2.8 GHz. This platform connects Generation 2 PCle devices to the CPU
via separate dual SR5690 northbridge controllers. One northbridge, the
“noisy” bus, interfaces with one CPU, 3 PCle slots, and all other mo-
therboard devices. The other northbridge, the “quiet” bus, interfaces
with a different CPU, 3 additional PCle slots (two X 16, one X 8), and
nothing else. This isolated bus with a dedicated CPU reduces bus con-
tention, which in turn increases determinism by reducing jitter im-
mensely from 30 ps to less than 1 ps.

In this system, the quiet bus houses a Concurrent-produced Realtime
Clock and Interrupt Module (RCIM), a Curtiss-Wright SL240, and the
Dolphin PXH830 under test. The SL240 is the FPDP I/O card used for
the low level communication with physical hardware, both sensors and
actuators. The RCIM is a special card meant specifically for RedHawk
systems. It supports multiple features useful for real-time work, such as
discrete, high-resolution clocks, internal and external interrupts, in-
ternal and external synchronization, and other real-time specific tools
[13].

3.3. Potential Intel Systems (Gen3)

Given the vintage of the existing AMD based systems and the
emergence of 3rd generation PCle devices, testing also included two
new Intel-based systems. The first used two quad-core Intel Xeon E5-
2637 v4 chips running at 3.5 GHz with HyperThreading disabled on a
SuperMicro X10DRi motherboard. The other used a SuperMicro X10DAi
with two 10-core E5-2687W v3 chips running at 3.10 GHz. These mo-
therboards have similar support for bus separation, though the bus
controllers are on the CPU die itself instead of residing on a north-
bridge. One CPU connects to 3 PCle slots along with the Platform
Controller Hub (PCH) and thus all additional motherboard devices. The
other CPU connects to 3 different PCle slots (also arranged as two at
%X 16 and one at X 8) and nothing else. Mirroring the existing systems, it
is this “quiet” CPU (and bus) that runs the RT code and interacts with
the I/0 cards.

Like the AMD system, the quiet bus also houses an RCIM along with
a matching Dolphin PXH830. There is no SL240 in this system. In the
eventual grand design, only one computer will interface to the outside
world; other computers will form a Dolphin-based cluster of sorts. The
testing platform attempts to mimic this future deployment.

3.4. Software harness

Dolphin provides several test programs alongside the drivers with
full source code available. This software exercises various aspects of the
functionality provided by the cards, and creates datasets for timing
evaluation. The main program employed for this testing is called
“scipp”. The version used has slight modifications such as using
mlockall() to protect against page faults and additional functions to
record data. It follows a very simple pattern for measuring perfor-
mance. Rather than addressing the inherent difficulty in synchronizing
timing mechanisms on separate computers, the software instead mea-
sures the round trip time between sending a piece of data to a remote
host and receiving the data echoed back over the physical connection. It
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Fig. 3. Generation 3 PCle Improvements.

repeats this for data payload sizes that increase by powers of two. Note
that testing revealed that for any given power of two size, such as 64
bytes, the data transferred is actually 4 bytes longer, or 68 bytes in this
example, to account for protocol overhead. The test results presented
below include payloads ranging from zero through 8 KB by increasing
powers of two.

To maintain accuracy, timing functions use the RDTSC and RDTSCP
instruction pair to have the least overhead while accounting for in-
struction reordering [10]. The RedHawk kernel provides regular and
frequent calibration of this cycle counter against the actual clock speed
to give better results than simply reading /proc/cpuinfo on a RedHat
system would provide.

There are two ways to record data. The stock method maintains
counters for 200 ns wide time intervals. For every measured time, the
program increments the counter corresponding to the interval into
which the measured time will fall. For instance, if a measurement is
1300 ns, it will increment the counter that represents times between

107

1200 and 1400 ns. This significantly reduces the amount of data col-
lected for a run. The enhanced custom method uses a “raw times” op-
tion to output individual time durations instead of the bucket approach
that the stock routines use. This requires a large memory footprint and
careful separation between measuring real-time data and outputting the
measurements. However, the testing generates many gigabytes of data,
providing very fine detail that can reveal potential patterns or problem
areas.

3.5. Physical setup

The permutations of configuring computer pairs were AMD Gen2 to
AMD Gen2, Intel Gen3 to Intel Gen3, and AMD Gen2 to Intel Gen3. In
the latter case, there was no notable difference between the two Intel
Gen3 systems, as the bulk of the performance differences came from the
change to Gen3 PCle over Gen2 PCle. Both computers in each config-
uration communicated directly through a point to point mini-SAS HD
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copper cable without an intervening switch.

4. Results

Test results ultimately showed very promising performance metrics.
The datasets described below represent summaries of close to a billion
test runs in varying configurations. Larger datasets generated with the
“raw times” option were downsampled for display purposes in a way
designed to capture and highlight, or show the absence of, important
outlier data. Simple averaging would hide these key data points.
Instead, the procedure involved carving data sets into fixed size chunks,
keeping the highest and the lowest sample in that chunk, and discarding
the rest. This procedure is purely for visualization purposes; the data
sets are available in their original form. Data generated without the
“raw times” option still involves a very high sample count, but the
equivalent data reduction occurred at creation time as described ear-
lier. All times are round-trip; the expectation is that one-way times are
nominally half of this value.

Fig. 2 shows completely linear scaling of total latency with constant
jitter when communicating between two identical AMD Generation 2
systems. While the data sets consist of millions of samples (the shortest
run was 10 million, the longest was 100 million), it is important to note
that the first data point in each size bucket results in an abnormal spike
due to caching and other extraneous, non-real-time applicable reasons.
That single data point is not present in the figure. There were zero
spikes aside from that first point, which the figure accurately reflects.

There is an obvious gap through which the trendline tracks rela-
tively consistently. The gap is small — less than 100 ns — and studying
this is both non-trivial and not inherently beneficial to the ultimate goal
at hand. Anything under 1 ps meets the demands of NSTX-U and serves
as an appropriate lower bound for optimization opportunities. Still,
future planned endeavors may revisit this as a curiosity.

Figs. 3 and 4 highlight the significant differences encountered
moving from Generation 2 PCle to Generation 3 PCle. Latency still
scales linearly (note the exponential Y axis), and jitter is mostly con-
stant. The jitter improvements are obvious and consistent with ex-
pectations based on the general infrastructure improvements of Gen-
eration 3 PCle, such as the overhead reduction from 8B/10B encoding
to 128B/130B encoding [16]. There is a strange, unexplained oddity
around several key payload sizes, however, that warrants further ex-
ploration. This oddity either does not appear in Generation 2 PCle or is
masked by the overall latency and jitter increase. Of special note is that
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the payload size of zero represents only the driver overhead, indicating
that some potential improvements may be possible on the driver side.
Nevertheless, the performance improvements indicate a clear overall
win.

5. Conclusion and future work

The results presented above serve as a solid proof of concept for
using Dolphin products in a deterministic, real-time safe way. The
measured jitter was well within acceptable limits for the NSTX-U timing
requirements, and in all cases, latency scaled linearly with payload size.

The main differences between systems under test were centered
around the generation of PCle bus support, despite the different hard-
ware vendors. Ultimately, when AMD releases the next generation of
server platforms [17] with support for Gen3 PCle, these tests will likely
show that the Intel and AMD platforms are comparable. Considering
that the measured throughput is near the theoretical maximum, it is
clear that the bottleneck is not the CPU.

As NSTX-U moves toward a future centered around clusters of real-
time control computers, advanced predictive control algorithms be-
come a reality. Eventually, the experiment could leverage a network of
relatively inexpensive processing nodes to provide real-time predictions
of plasma shape and profile evolution based on proven simulations to
augment the capabilities of existing methods. Additionally, this can
serve as an easy platform to spin up new real-time diagnostics and in-
tegrate them into the control system without significant timing analysis
and engineering effort.
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