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Abstract
Detailed measurements of the main ion ( +D ) and impurity ion ( +C6 ) evolution during the
development of the H-mode pedestal across an L–H transition show significant differences in
toroidal rotation, density, and temperature profiles in the pedestal region on DIII-D. While both
species experience a slow toroidal spin up at constant input neutral beam injected torque, the

+C6 toroidal rotation develops a non monotonic notch feature and lower toroidal rotation near
the plasma edge immediately following the L–H transition. This feature is not present in the
main ion rotation that instead, depending on plasma parameters, can show a flat or peaked
rotation near the separatrix. The +D and +C6 temperature profiles show a similar evolution;
however, the D+ temperature is lower than the +C6 temperature at the separatrix in both L and
H-mode which may be due to cooling of +D via charge exchange with cold edge deuterium
neutrals. Local neoclassical predictions of the main ion toroidal rotation based on the impurity
properties show good agreement with direct measurements at the pedestal top for a lower power,
higher collisionality case but can diverge significantly in the steep gradient region for the two
shots studied here. These observations highlight the importance of directly measuring the
properties of the main ion species at the plasma edge.

Keywords: L–H transition, momentum transport, transport, charge exchange recombination
spectroscopy

(Some figures may appear in colour only in the online journal)

1. Introduction

Toroidal rotation and its shear play a crucial role in deter-
mining stability to large scale MHD [1], E×B shear stabi-
lization of micro-turbulence [2], and access to advanced
operating scenarios such as ELM suppressed H-mode and QH
mode [3, 4]. The continued development and validation of
transport models is required to better predict and optimize the
toroidal rotation of future magnetic confinement devices such
as ITER. This requires improved understanding of topics such
as intrinsic rotation [5–9] that depend on accurate measure-
ments of the plasma flow velocity.

The main ion species carries the bulk of the momentum
and thermal energy, meaning their temperature, toroidal

velocity, and density are the required measurements for test-
ing momentum and energy transport models. Initial work on
making these main ion measurements using charge exchange
recombination spectroscopy (CER) in the deuterium neutral
beam injection (NBI) heated deuterium plasmas that are
typically studied on large tokamaks was performed in the 80s
and 90s on T-10 [10], JET [11], and TEXTOR [12]; however,
due to the complexities of the spectrum and difficulties
modeling the effect of halo emission, the measurements were
rarely made and the technique was not developed further until
relatively recently [13–19]. Main ion measurements have
been made in helium plasmas using CER with deuterium NBI
[20, 21]; however, these plasmas suffer from deuterium
dilution, and are rarely created due to operational overhead.
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Bulk plasma rotation measurements can also be made using
Mach probes [22–26]; however due to power flux con-
siderations, these measurements are limited in duration, sce-
nario, and depth into the plasma. Additionally, neutral particle
analyzers [27] and collective Thomson scattering [28–30]
have been used to measure the main ion properties. Typically,
impurity CER [31–34] has been used to determine the prop-
erties of an impurity species, usually C-VI( = n 8 7,

Å5290.5 ) on DIII-D, with the main ion properties either
being assumed to be equal or inferred using neoclassical
models. The main ion and impurity rotation are known to
diverge considerably in low collisionality conditions [35, 36]
and in regions where there are steep pressure gradients such
as the H-mode plasma edge, providing a significant modeling
challenge that requires high resolution experimental data for
validation.

Advances in CER spectroscopy have allowed direct
measurements of the deuterium ion properties in the plasma
core [13] and more recently the pedestal and steep gradient
region [14–17] in deuterium beam heated plasmas on DIII-D.
This technique, referred to as main ion CER (MICER), uses
aD emission (D-I[ = n 3 2, Å6561.0 ]) due to charge

exchange with the neutral beams as well as the associated
halo emission. Details of how the difficulties of modeling the
effect of the halo emission were overcome at the plasma edge
using the FIDASIM code [37, 38] are described in [17]. The
sight-lines for the edge MICER system are interleaved with
sight-lines for the recently upgraded impurity CER system
[39] (see figure 1 in [16]) allowing comparisons between the
impurities and main ions that are free from spatial uncertainty.
This setup allows the simultaneous measurement of the
deuterium and impurity temperature, toroidal rotation, and
density. The following sections present the results of using
this capability to contrast the development of the main ion
and impurity pedestals across the L–H transition.

2. Profile evolution across L–H transition

Two DIII-D lower single null discharges with favorable ∇B
direction are investigated. For the first case (164436), a saw-
tooth crash triggers an L–H transition, providing an excellent
opportunity to study the impurity and main ion properties near
the L–H power threshold across the transition while the input
beam power and low NBI torque are constant and there are no
ELMs. The parameters for this discharge are: Ip=1.3MA,
BT=−1.7T, PNBI=0.8MW, =T 0.9 N mNBI . Time traces
of the central line average density and filterscope signals are
shown in figure 1. The integration time for the CER systems is
5ms, which captures details of the profiles leading up the
L–H transition and the development of the H-mode profiles
following the transition, but is not fast enough to capture
details of the transition event. The plasma impurity content is
low in this plasma, with an effective plasma charge Zeff≈1.2.
The second discharge (164988) is a near zero input torque
ITER baseline scenario [40] with the following parameters:
Ip=1.2MA, BT=−2.0 T, PNBI=4MW, TNBI=0.2 Nm.
This discharge has four times the beam heating compared with

the first case and is more representative of a typical high
performance H-mode on DIII-D. For this case, the H-mode
profiles are compared. These two cases are referred to as the
‘low power case’ and ‘ITER baseline case’ in the rest of the
paper. Large portions of the data analysis shown in this work
were performed using the OMFIT [41] modeling framework
using the OMFITprofiles and TRANSP modules [42, 43].

2.1. Toroidal rotation evolution

Evolution of the toroidal rotation profiles provides insight into
the nature of the transport changes across a confinement
transition. Rotation profiles for +D and +C6 across the L–H
transition (marked in figure 1 for the low power case) are
shown in figures 2(a) and (b) respectively. Profiles are plotted
against ρ, the square-root of normalized toroidal magnetic
flux. Inside the top of the pedestal both species show an
increase of the toroidal rotation at near constant input beam
torque as the plasma achieves an increased angular momen-
tum, but species dependent modifications are seen in the
pedestal and steep gradient region.

Contrasting the main ion and impurity toroidal rotation
exposes key qualitative differences that deviate from

Figure 1. Time evolution of the central line averaged density (a), and
power and torque (b), across an L–H transition which occurs at
3731 ms. Smoothed values of the power and torque are also shown.
Rapid changes in the density (a) are concomitant with the reduction
in edge aD (c). The shaded region and vertical dashed lines at 3620
and 4440 ms are investigated in subsequent figures.
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expectations of reduced transport in the steep gradient region
due to E×B shear suppression of turbulent transport. The
main ion rotation profile remains relatively flat, which is not
expected if the momentum flux obeys Fick’s law and the
momentum diffusivity is reduced. Instead, the increased
rotation at the top of the pedestal appears to be due to the
increase in the toroidal rotation boundary condition at the
separatrix.

In contrast to the main ion rotation, the impurity rotation
develops sharp gradients in the pedestal; however, this is not
in the manner expected from reduced momentum diffusion.
Rather than displaying a standard transport barrier with
increasing magnitude of a monotonic profile gradient, the
impurity rotation profile exhibits both an increasing negative
gradient on the core side of the pedestal following the L–H
transition, and a positive gradient on the separatrix side of the
pedestal.

Similar notch features have been observed previously in
impurity toroidal rotation measurements on ASDEX upgrade
[21, 44–46], DIII-D [47, 48], and TFTR [49]. In the ASDEX
work the notch is in the pedestal region and was attributed to

an impurity density asymmetry with higher concentrations on
the high field side. On TFTR high performance supershot
discharges a notch was observed near the core, in regions of
high ion temperature gradients and was attributed to anom-
alous radial momentum diffusion together with parallel heat
friction on the impurity ions due to neoclassical parallel heat
flow [49]. The same work used neoclassical calculations to
predict that the notch is not present in the main ion toroidal
rotation allowing for a profile consistent with anomalous
radial diffusion of toroidal momentum. A clear result of the
new measurements shown in this paper is that the notch is not
visible in the bulk main ion toroidal rotation.

In order to better see the time evolution of the notch
feature, figure 3(c) shows time traces of the toroidal rotation
for +C6 and +D at ρ=0.97. The individual impurity and
main ion channel measurements are linearly interpolated in ρ

to provide time traces which are at constant ρ values. The
notch develops faster than the 5 ms integration time of the
CER measurement indicating that if the notch is due to
impurity density asymmetries, they develop within 5 ms of
the L–H transition.

The time evolution can be separated into a prompt initial
behavior which occurs within 5 ms of the L–H transition and
a longer timescale evolution towards the saturated values.
Comparing figures 3(a)–(d) we can see that the main ion
toroidal rotation increases across all shown ρ values following
the L–H transition while the carbon shows an opposite
behavior around the notch feature (ρ=0.97). The main ion
toroidal rotation evolution towards the saturated value is
slower than the main ion temperature and density evolution,
which are also shown in figure 3 and discussed in the fol-
lowing sections. Detailed toroidal rotation profiles and com-
parisons with neoclassical theory for the low power case and
ITER baseline case are described in section 2.4.

2.2. Temperature

It is well known that the temperature of the electrons and
commonly measured impurity ions can differ significantly
depending on how the plasma is heated and the dominant
energy transport mechanisms. Differences between the
impurity and main ion temperatures have received much less
attention, largely due to the absence of main ion temperature
measurements in +D plasmas and the assumption that they
are typically well coupled. The ion temperatures are often
assumed to be equal in the absence of direct +D temperature
measurements. This assumption has implications in areas
such as pedestal stability analysis, ITG turbulence drive, and
provides a boundary condition for ion energies in scrape off
layer studies. The observed differences between the +D and

+C6 temperatures for the two shots studied in this paper are
described below.

Figure 4 compares the species dependent toroidal rotation
and temperature profiles for the low power case before (a), (c)
and after (b), (d) the L–H transition. In L-mode (figure 4(c))
both the +C6 and +D ion temperatures are well coupled
within the error bars except near the separatrix where the
difference increases slightly. In the lower collisionality

Figure 2. Rotation profile evolution of +D (a) and +C6 (b) across the
L–H transition marked in figure 1 plotted against the square-root of
normalized toroidal magnetic flux (ρ). A notch develops very rapidly
in the +C6 rotation just inside the separatrix. This feature is not
present in the main ion rotation. Time histories at the location of the
vertical red dashed lines are shown in figure 3.
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H-mode (figure 4(d)) for the same shot, the differences
between the two species increases with the +D temperature
being approximately 70 eV lower, halfway between the

+C6 and electron temperatures.
One possibility for the difference between the apparent

main ion and impurity temperatures inside the top of the
pedestal is the effect that Zeeman splitting can have on the
observed temperature. Calculations using the parameteriza-
tion in [50] show that this effect is negligible for the main
ions, but may be significant for the impurity ions, reducing
the temperature difference by ≈30 eV for the cases shown
here. However, this parameterization assumes that the upper
energy levels are statistically populated which is not the case
for active charge exchange due to the l-dependent cross-
sections, so it is not applied to the plots shown here and
further investigation is left as future work.

Figure 5 shows species dependent temperature and tor-
oidal rotation plots for the ITER baseline case in H-mode.
Similar differences (compared with the low power case) are
seen for the temperatures inside the top of the pedestal
(figure 5(b)); however, as the separatrix is approached the
difference between the +C6 and +D temperatures increases
rapidly with the main ion temperature being less than half the

+C6 temperature near the separatrix. Some possible reasons
for the differences near the separatrix include the effects of
in–out impurity density asymmetries, banana orbit widths of

higher energy tail impurity ions, and atomic physics con-
siderations. Additionally, at the separatrix the main ion
temperature is 2–3 times higher than the electron temperature.
This is roughly consistent with other experimental measure-
ments [51] and conventional models of SOL heat transport for
low collisionality [52].

As was described in the previous section, the existence of
a notch in the impurity toroidal rotation profile may signify
in–out impurity density asymmetries that have been measured
on both ASDEX upgrade [45] and CMOD [53] using high
field side gas puff CER. As discussed in the CMOD work
[53], if the pressure is constant on a flux surface, then the
existence of a higher impurity density on the high field side
means that the temperature on the low field side will be higher
than the flux surface averaged temperature. This could par-
tially explain the elevated impurity temperature relative to the
main ion temperature on the low field side.

There are also important atomic physics considerations
near the separatrix where multiple charge states of carbon
exist. It is important to note that there are six positive charge
states for carbon and we are only measuring the fully ionized
one. The ionization energy for C5+ is 490 eV, which is
significantly larger than the electron temperatures near the
plasma edge, meaning that there will be significant distribu-
tions of lower charge states of carbon. This reduction in

Figure 3. Time traces of the +C6 (green) and +D (blue) toroidal rotation (top row), temperature (middle row) and brightness (bottom row)
across the L–H transition, which is marked with the vertical dashed line. The brightness is approximately proportional to particle density. The
electron (black) temperature and density are shown in the middle and bottom rows respectively, with the density being scaled to fit on the
same axis as the brightness. The rows do not share the same axis and are zero suppressed so that the dynamics can be seen more clearly. Each
column represents a different radial location that is marked by the red dashed lines in figure 2.

4

Plasma Phys. Control. Fusion 60 (2018) 105001 S R Haskey et al



+C6 density near the separatrix means that the +C6 that exists
there will have a larger proportion of higher energy tail ions
from deeper inside the plasma which are on the co-current leg
of their banana orbits, leading to an increase in the measured
temperature. This effect was simulated using XGC0 for a QH
mode (see figure 3(d) in [54]) and reproduced the observed
increase in impurity temperature in the scrape off layer. This
increase in impurity temperature crossing the separatrix is
also seen in figure 5(b).

Another consideration is that the interaction with the cold
deuterium neutrals at the plasma edge will have a direct cooling
effect on the +D population but not the +C6 . Charge exchange
between a thermal +D and cold deuterium neutral essentially
swaps a hot +D for a cold +D reducing the overall temperature
of the +D population (modeling of the cooling effect of
edge cold neutrals on the +D and associated effects on ITG
turbulence is discussed in [55]). On the other hand, charge
exchange between a thermal +C6 and a cold deuterium
produces a C5+ and a cold +D , which reduces the +C6 density
but does not affect its temperature (a new +C6 is not created).
Because this process creates a cold +D , it also reduces
the temperature of the +D population. In summary these
considerations mean that the interaction with the cold edge
deuterium neutrals is a thermal sink for +D but not the +C6 .

The time traces of the impurity, main ion temperature,
and electron temperature at different radial locations across
the L–H transition are shown in the middle row of figure 3. A
sudden jump is seen in the temperatures of all three species at

the pedestal top following the L–H transition event on the
prompt 5 ms timescale along with an increased difference
between the +C6 and +D temperatures. On a longer time-
scale, the edge main ion temperature does not change sig-
nificantly while the toroidal rotation shows significant spin
up. Additionally, the main ion temperature evolves more
rapidly towards its saturated value than the toroidal rotation,
demonstrating that the changes in energy and momentum
transport following the L–H transition are not the same.

2.3. Particle density

The evolution of the brightness of the thermal charge
exchange line is shown in the bottom row of figure 3. The
emission brightness is proportional to the charge exchange
cross section, the neutral beam density and the density of the
ions being measured. The first two terms are approximately
constant across the edge region, meaning that brightness
provides a good proxy for changes in the particle densities of
the impurities and main ions in the edge region. The electron
density is also shown in these plots with an appropriate
scaling to fit on the same axes.

As with the temperature (and contrasted against the main
ion toroidal rotation), rapid changes are seen immediately
following the L–H transition within the 5 ms integration time
of these measurements. This is most clear for the impurities in

Figure 4. +C6 and +D toroidal rotation and temperature profiles in
L-mode and H-mode. Predictions of the main ion toroidal rotation
using NEO show accurate predictions of the increased +D velocity
relative to the +C6 inside the pedestal top but significant differences
in the steep gradient region. There are two NEO predictions: one
uses the newly measured main ion measurement, the second assumes
that the main ion temperature is the same as the +C6 temperature
which is commonly assumed in the absence of +D temperature
measurements.

Figure 5. Toroidal rotation and temperature profiles for ≈0 N m
input torque, high performance ITER baseline scenario H-mode
which has a factor of 4 higher injected power compared with the
discharge shown in previous figures.
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the scrape off layer (figure 3(l)) where the +C6 brightness
immediately decreases by a factor of two indicating a dra-
matic change in the impurity particle transport. The cause of
this rapid change may be due to the following: a decrease in
outward impurity particle flux due to the formation of the
transport barrier, an increase in the inward particle pinch,
and/or a possible poloidal redistribution of the impurities.

Both the main ion brightness and electron density evolve
more rapidly to their steady state values compared with the
impurities. The density of the impurities increases by a factor
of ≈2 for the locations inside the plasma compared with a
factor of ≈1.4 for the main ions. The drop in divertor aD light
following the L–H transition demonstrates a reduction in the
plasma density in the scrape off layer, consequently the
neutrals can penetrate further into the plasma increasing the

+D source further inside the plasma, which may play a role in
the more rapid evolution of the +D density [56]. The longer
evolution of the +C6 has a minor impact on the electron
density evolution because Zeff is low in this plasma.

2.4. L and H-mode toroidal rotation profiles and comparison
with neoclassical theory

The difference between the +C6 and +D toroidal rotation
increases significantly near the separatrix with the

+D rotating more rapidly, as shown in figure 4 for the low
power case and in figure 5 for the ITER baseline discharge,
which has a factor of 4 higher injected power. The difference
between the two species increases going from L-mode (low
power case) to H-mode (low power case) to the ITER baseline
case where there is a rapid 60 km s−1 co-current peaked tor-
oidal rotation at the separatrix. When interpreting these tor-
oidal rotation measurements it is important to note that these
measurements are made at the low field side midplane and are
not flux surface averaged quantities. This edge rotation fea-
ture may be due to ion orbit shifts, as treated in ion orbit loss
models [57, 58], first-order neoclassical flows, or transport-
driven edge rotation [9] and it may be a signature of intrinsic
rotation generation mechanism. The origin and transport of
this edge rotation is an active area of research that has been
investigated using Mach probes [26, 59]. Simulations have
been performed with full function gyrokinetic XGC1 mod-
eling [60] and kinetic neoclassical XGC0 modeling for a QH
mode case [54, 61].

In low Zeff plasmas, the toroidal momentum is dominated
by the main ions; consequently momentum transport studies
rely on the main ion toroidal rotation. In the absence of direct
main ion toroidal rotation measurements, neoclassical calcu-
lations of poloidal velocity are often used to obtain the main
ion toroidal rotation. We can test this workflow using the main
ion toroidal rotation measurements for the two cases studied
in this paper. Neoclassical codes cannot directly calculate
the main ion toroidal rotation. Instead they calculate the
neoclassical main ion poloidal rotation and use this value in the
radial force balance relation along with the radial electric field,
main ion density, and temperature profiles to obtain the main
ion toroidal rotation. The radial electric field is usually mea-
sured experimentally through impurity CER measurements of

the impurity toroidal and poloidal rotation as well as impurity
density and temperature profiles. If the impurity poloidal
rotation measurement is not available, the neoclassical impurity
poloidal rotation can be calculated and used with the other
profiles to obtain a ‘neoclassical’ radial electric field.

Figures 4(a), (b) and 5(a) show the results from per-
forming this calculation using NEO [62] which is a δf Eulerian
model that solves the drift-kinetic equation in a multi-ion
species plasma. Here, NEO is used to calculate the poloidal
rotation of both the main ions and impurities. The calculations
are shown for the case where the main ion temperature is
assumed to be equal to the impurity ion temperature (a typical
assumption when main ion temperature measurements are not
available), and where the respective temperatures for each
species are provided as inputs. The agreement is slightly better
when the respective temperatures are used. For both the L and
H-mode in the low power case, good agreement is found for
ρ<0.93. However, at the very edge of the plasma (ρ>0.93)
significant differences are found. For the higher powered
ITER baseline case, large differences are seen in the steep
gradient region, along with a systematic ≈15 km s−1 offset
between the measurements and neoclassical predictions for
ρ<0.9. These discrepancies mean that there are differences
between the poloidal rotations and those predicted by NEO.
These differences may be the result of increased finite orbit
width effects in the steep gradients, ion orbit loss effects, or
due to the interaction with neutrals, which are not included in
the NEO code. Comparison with modeling using codes that
include some of these effects [54, 61], at significantly greater
computational cost, is ongoing.

The question of whether poloidal rotation can be
explained by neoclassical theory has been the subject of
significant work, with mixed results [20, 21, 35, 63–68].
Extensive comparisons between neoclassical calculations of
main ion poloidal rotation, and the inferred main ion poloidal
rotation at the plasma edge (using the measured radial electric
field and the main ion properties, as described for core
MICER measurements in [35]) will be the subject of
future work.

3. Conclusions

MICER along with standard impurity CER has been used to
study the differences between the +C6 and +D temperature,
toroidal rotation, and density evolution across an L–H trans-
ition at the plasma edge. Large differences are seen in both
the magnitude and profile shape of the +C6 and +D toroidal
rotation before and after the L–H transition in the steep gra-
dient region of deuterium plasmas heated with deuterium
NBI. The +D can be rotating significantly faster than the

+C6 with a large co-current peak near the separatrix seen for
high power 0 Nm torque ITER baseline scenario. Neo-
classical predictions of the main ion poloidal rotation, which
are often used to calculate the main ion toroidal rotation in the
absence of direct measurements can provide a good prediction
at the pedestal top for some cases, but large differences are
seen in the steep gradient region.
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The main ion temperature can be as low as half the value
of the commonly measured impurity ion temperature at the
separatrix, most likely due to atomic physics effects cooling
the deuterium at the plasma edge. Both the main ion temp-
erature and density are shown to increase on a much faster
timescale to their saturated values than the toroidal rotation
following the L–H transition. These observations highlight
the importance of directly measuring the properties of the
main ion species at the plasma edge.
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