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Motivation

« Conventional detachment and RMP ELM suppression are
hard to be combined

— Unavoidable pedestal collisionality rise by gas puffing -2
incompatible with low v_* like in ITER

« Snowflake divertor is a leading advanced divertor concept
for steady state heat flux management
— Detachment was achieved w/o gas puffing in NSTX
— ~x2 peak heat flux reduction achieved in DIII-D

 3-D fields to be combined with snowflake to control
transient heat flux from ELMs
— Role of plasma response
— Phasing of applied 3-D fields and current ratio
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Heat flux reduction by snowflake in DIlI-D

Flux expansion ~ (b)
40+ Standard -
SP1 SF-minus
30k SF-plus |
SP3
20 -
10 | /1508874240 SP1
150683 4250
0 153806 4646 SP1
10 11 12 13 14
Rgiv (M) (c)
200 Fsonnection length, ]
midplane to target (m)
150 - Standard
SF-minus|
SF-plus
100
150687 4240
150683 4250
50 153906 4646
0 -

0 1 2 3 4
Rmid-Rsep (Mm)

—h
T

Soukhanovskii, JNM 2015

[0 T T T T 0
Divertor2 heat flux (a)
(MW/m*<) Standard
SF-minus
” SF-minus
:H
I
4
|
b h
120831
ul 1 1 L shadow | In
10 1.1 12 1. 14 15
R_div (m)

25

20

15

10

05

0.0

L] 1 1 1 1 1

Divertor heat flux (b)

(MW/m?) ﬂ Standard

SF-plus

‘lhs:c 1 1 \—Mﬁ

10 11 12 13 14 15
R_div (m)

* Various snowflake configurations have been tested in

DII-D (Soukhanovskii)

— Typically x2-3 of Opeak achieved by geometric effect
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Plasma response plays a key role in ELM

suppression
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« Recent n=2 ELM suppression result in DIlII-D demonstrates
importance of maximum resonant current drive by plasma response
for ELM suppression

« ELM suppression experiment in KSTAR this year strongly supports
the importance of resonant edge fields by plasma response
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Snowflake modeling in

progress on NSTX-U

and will be transferable to DIII-D
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* Resistive plasma
response from M3D-C1
(G. Canal)

« EMC3-Eirene run for
vacuum B-fields and
plasma response case is
in progress (H. Frerichs)

« Simulation on DIII-D will
be readily available
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How to apply 3-D fields to snowflake
configuration”?

* No previous experience

« ELM suppression/mitigation conditions could be different for
snowflake
— Resonant response is a key
— Optimal RMP spectra = q95, A¢,, plasma shape, etc

— n=27 n=37 Or both?
— Pedestal stability analysis w/ and w/o 3-D fields

» Plasma response modeling for snowflake equilibrium

— Ideal modeling (IPEC)
— Resistive modeling (M3D-C1)

« Plasma control is an urgent issue to be resolved before the run
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