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Overview

 What can OD models tell us about the plasma
density response to a pumping surface?
— assumptions, data inputs, predictions

— can we modify the models to be more in concert with
observables in NSTX?

 How can we design experiments to verify and refine
model predictions?

« Can 0D results be connected to more sophisticated
2D models?
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0D Model

Particle Balance and Recycling Model

NSTX
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0D Model Il

Simplified Particle Balance and Recycling Model
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0D Model lil

Simplified Particle Balance and Recycling Model

NSTX
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0D Model IV

Limits of Particle Balance and Recycling Model
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0D Model V

Method to Relate 0-D Pump Probability to Divertor
Plasma and Lithium tray parameters

@ NSTX
. : o In/out particle flux ratio - 0.8
L1 surface particle sticking
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Limits and Uses of 0D Model

* Depends heavily on S/XB number from D, to calculate
relative particle flux to LLD

— can improve S/XB accuracy with local measurements from both
inboard and outboard Langmuir probes

— more direct flux measurements possible with IR and probe data

« Was designed to provide fraction of total pumping due to
LLD, not specific information about overall pumping

— more relevant number is fractional reduction in rp* due to LLD, or
1/(1-) € measurable both by density pumpout and fueling
requirements

* Does not tell us about expected changes to SOL density,
assumes steady state
— but we can eventually modify it to look at just Ngy, response
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Some dependencies of the model

LLD Tau_p Factor vs. Particle Sticking Probability for 137611 at 0.5 s

 Sticking probability is
dependent on LLD surface

550

properties .
— has ~30% effect on density -
pumpout 3

— can we refine this number with
lab experiments?

 Incident particle fraction is

45

determined mainly by magnetic 0.0 0.2 Oét‘cking PrObi”S&e 0.8 1.0
geometry LLE) Tau_p Foctolr VS, IncidentIPorticle Froctilon
— depending on inboard divertor sf :

detachment and OSP location,

can be close to 90% for shots on
LLD

— could result in 20-30% changes ..t E
in efficiency as OSP moves : :
inboard

— can be related to S/XB, refined sl -
with probe measurements - 1

5.0F E
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0D model predicts changes to particle lifetime with and
without LLD presence

« Scan in Rp, recycling of carbon walls
— according to J. Canik, should be 92% for pumping, 98% for passivated
« Two cases (more can be added later, but probes measure OBD)
— R=.63(137550), R = .7 (137611)
« Should provide expected particle lifetimes for active/inactive LLD with
and without actively pumping carbon tiles

Tau_p Factor vs. Initial Wall Recycling

. T .
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Results of model suggest experimental sequence

« Start at point 1 on figure: hot LLD, fresh Li on tiles — highest pumping scenario
« As carbon tiles passivate, particle confinement time is predicted to increase and fueling
requirements will decrease - point 2
— need enough Li inventory in LLD to ensure it stays active
— if point 2 should have reproducible density response as pumping conditions stay constant
« As LLD eventually saturates and/or cools, should head towards point 3 with weakest pumping,
highest particle lifetime and lowest fueling requirements

— cooling LLD, passivating surface (without saturating bulk Li), and then reheating (back to point 2) could
demonstrate recovery of LLD surface conditions

Tau_p Factor vs. Initial Wall Recycling
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XP 1001 will be able to test predictions of 0D model

« Sequence of shots as surrounding tiles passivate can form
database for particle confinement time, fueling requirements
— exponential density decay will give T’
— TS data can show density response of core plasma to SGI gas puff
— change in overall fueling requirements should be measurable

« Langmuir probes can be used to characterize SOL density
response at various SOL depths

« Cold, passive LLD will form basis for comparison

— does it actually behave like Li on carbon when cold, or does it
saturate differently?

— will give baseline confinement time data with and without active walls
(top curve in previous figure)
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Future work and more model connections

* Model needs to be adapted to SOL to allow for correlation
with edge plasma measurements from probes

 Allow for more data inputs into model, such as time resolved
measurements for source terms and flux balances (in/out,
up/down)
— IR camera, visible camera, reflectometer... etc?

* Does UEDGE (or another 2D model) agree with 0D results
— can 0D results be integrated into UEDGE to provide core or SOL
boundary conditions?
* As always, more analysis of dependence of terms in model
on LLD surface conditions

— sticking coefficient may evolve during a discharge due to saturation
levels and breakup/formation of surface impurities
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