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Need for benchmark data on fundamental surface physics of Li

* Density control will be important for optimizing and controlling high
non-inductive current-drive fraction scenarios in NSTX-U.

« Lithium conditioning of PFCs has been shown to pump hydrogenic
species however contamination by residual gases is believed to limit its
performance.

« A quantitative understanding of the influence of residual gases on lithium

adsorption of deuterium by lithium will facilitate predictions of particle
control in NSTX-U.

Opportunity:

Fundamental data on plasma- Li-PFC interactions will lay the groundwork,
and reduce the risk for innovative PFCs in NSTX-U.

Minimizing advanced Li-PFC risk is also critical for NSTX-U's missions
in other ST areas.
(C. Skinner)
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New materials characterization labs at PPPL
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Initial studies to assist with quantitative projections
for pumping and D recycling by Li coatings

» X-ray Photoelectron Spectroscopy (XPS) of gas reactions with solid Li

— Uptake kinetics and reaction rates
—Surface reaction products and compound formation

» Temperature Programmed Desorption (TPD) studies of Li films on Mo

—Thermal stability and wetting
—Metal-metal and metal-oxide bonding energies

» Auger Electron Spectroscopy (AES) and TPD studies of gas reactions
with Li films on Mo

—Thermal stability and wetting

—Reaction pathways and decomposition products
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XPS studies of gas reactions with solid Li

Li surface oxidation tracked by
X-ray photoelectron spectroscopy

XPS photoelectron range similar
Monochromatic Al Ka x-rays (1486.6 eV) photoionize atoms. .
Emitted photo-electron energies are measured with high 1'0 D S'l'opplng l"ange

resolution 300 mm radius hemispherical electrostatic analyzer.
Photo-electron energy reveals chemical state of top ~ 20 monolayers
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Lithium oxide signal increases with H,O exposure time

H,O exposure 6.2 e-8 Torr
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AES studies of Li films on Mo
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Auger electron spectroscopy (AES)
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TPD studies of Li films on Mo

7 amu | Temperature programmed desorption (TPD) mass spectroscopy

Li TPD spectra from Li on TZM
Mo as a function of Li deposition

Li multilayer E =137 kJ/mol
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Summary and Future Plans

« Aclean Li surface is oxidized to > 5 nm depth in 20 s by 10 torr of O, or H,0.
Oxidation from CO is much slower.

« After a typical NSTX shot the H,O partial pressure decreases from 3x10 torr — 3x10-8
torr with a corresponding oxidation time of 6 — 600 s.

« PFC surface after Li evaporation is a mixed material rather than a pure ‘lithium coating’.

» Surface composition in flowing Li-PFC system will depend on base vacuum pressure and
Li flow rate.

Future Plans:
» Gas uptake kinetics and reaction rates on Li films, including effects of temperature,

film thickness, and substrate type and preparation.

« Study effect of gas exposures on Li film thermal stability and wetting.

« Evaluate the thermal stability and decomposition mechanism of surface compounds
formed from gas exposures

 Identify surface reaction products and compounds formed from gas exposures

« D atom, D ion, and D plasma sources to make D pumping measurements of clean
and contaminated Li films on Mo
Goal: D retention in Li vs. residual gas exposure, substrate temperature and fluence
for incorporation in SOLPS model (Canik)
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XPS studies of gas reactions with solid Li

X-ray Photoelectron Spectroscopy (XPS)*

Electron energy

Ll Al/Mg Ko X-ray source | Te-K-W Glass
L J MgKo=1253.6 eV | Fractured in situ
AlKo=1486.7 eV ' Te(3d)
g .
8 0(1s)
Energy Levels ' Te(3p)
2p;, (L;) —00-0-0 . [ KQp) W(d)
2pyp (Ly) *—o . LN \p\ /
25 (L) —o—e ' L“’J

hv T T T T
! 1000 800 600 400 200

o
1s (K) o\r“fe Binding Energy, eV

, “Electron Spectroscopy for Chemical Analysis (ESCA)

.......

Princeton Surface Science




AES and TPD studies of Li films on Mo

SAES Li getter source
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AES and TPD studies of gas reactions with Li films on Mo

Auger electron spectroscopy (AES)
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Temperature Programmed Desorption (TPD)

Desorption rate, ry = d8/dt = k; 0" = v, exp -E,/RT 0"
E, = desorption activation energy

Heating rate, B = dT/dt
A surface is heated and a mass

spectrometer is used to measure the eat T
products desorbing from the surface. eating p
In a dynamically pumped system, the A
pressure is proportional to the desorption U j
rate. sample [\ { qms g
Information from TPD: Pumpsl
ereaction products & coverages UHV
ereaction pathways Temperature (K)
edesorption activation energies
edistribution of binding sites Ed2 Y Xp E,
RT, p RT,
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