

NSTX-U Milestone R18-2: Develop simulation framework for ST breakdown and current ramp-up

Devon Battaglia, Francesca Poli, Dan Boyer, Doohyun Kim, and Pat Vail for the NSTX-U team

FY2018 Q2 Research Milestone Status January 24, 2017

Modeling tools will focus on different challenges within the ramp-up

TOKSYS control modeling LRDFIT vacuum field calculations Feedforward → GAP → ISOFLUX shape control Null formation, Transition from IWL \rightarrow DN (L-mode) dB₇/dt with passive stability Vertical stability at high κ **ISOFLUX GAP** 600 500 I_{P} (kA), $P_{NBI}/10$ (kW) 400 TRANSP modeling 300 Diverted shape Pedestal build up following L-H 200 Focus on current, rotation and pressure profile evolution 100 Evaluate stability (vertical, MHD, fast ion) 100 110 120 130 140 150 160 170 50 60 70 80 Time (ms) L-H transition **Divert**

Main elements of FY18 milestone

- Inductive startup calculations using LRDFIT
 - Quantify difference between model and experiment
 - Identify impact of V_{loop} and dl_p/dt on the null quality and field index
 - Includes NSTX-U and MAST-U analysis
- Control modeling focusing on IWL → DN transition
 - Using TOKSYS code from General Atomics
 - Reproduce vertical oscillation at time of diverting in model
 - Investigate control solutions for earlier time of diverting, eliminating vertical oscillation and test resiliency to scenario perturbations
- TRANSP calculations for heating and current drive
 - Compare predictive calculations to NSTX and NSTX-U ramp-up
 - Investigate impact of outer gap, density, NBI, dlp/dt ...

Status of LRDFIT breakdown modeling

- Inductive breakdown simulations for NSTX(-U) and MAST(-U)
 - Demonstrated MAST-U can achieve similar breakdown metrics to NSTX-U within the voltage limits of PF coils
- Remaining goals for FY18:
 - [Q-3] Investigate potential sources of updown asymmetry that scaled with I_{OH} on NSTX-U
 - [Q-4] Quantify impact on null quality and field index with V_{loop} and dI_p/dt on NSTX-U and MAST-U
 - Can we ramp I_D faster following breakdown?
 - MAST-U may provide supporting experiments summer of 2018

Midplane B_Z evolution over first 4 ms

Overview of TOKSYS and SIMULINK development

 FY18 goal: demonstrate a simulation framework for developing and testing shape control in ramp-up

Flux loops, Mirnovs, Rogowskiis

- Aim is to establish closed loop test with PCS
 - End-to-end test and valuable for shot planning work
 - Ability to test algorithm outside of PCS will be maintained
- Simulink connects PCS to TOKSYS or TRANSP
 - TOKSYS provide fast (~ minutes) solution, enables large parameter scans

Present activities on TOKSYS and SIMULINK development

- [Q-2] Get PCS working in SIMULINK
 - Pat, Dan and Keith continue to debug with Mike Walker.
- [Q-2] Develop PS model in SIMULINK
 - Pat has a simplified PS model for algorithm testing
 - Dan has simple model for converting firing angle to dV
- [Q-2] Develop TOKSYS models for ramp-up phase
 - Pat has developed and validated wall model for NSTX-U using vacuum shots
 - Pat is leading development of linearized plasma models for NSTX-U ramp-up (20 – 500ms)
 - First test is examining how the interval of updating the linearized model impacts agreement with experiment

Control modeling goals for FY18 milestone

- [Q-2] Closed loop calculation of an NSTX-U discharge using PCS in simulink with TOKSYS and possibly TRANSP
 - Advances "shot simulator" capabilities
- [Q-3] Evaluate different TOKSYS models in ramp-up
 - Fixed shape, rigid shape, grad-Shafranov ...
 - Fixed evolution of q profile, β_N
 - How often does linearized model need to change during different phases of the discharge?
- [Q-4] Reproduce different varieties of "the bobble" at the time of diverting
 - Start to investigate proposed solutions from FY17 milestone

Status of TRANSP calculations

- [Q2-3] Validation of TRANSP model for ramp-up period (Doohyun, Francesca)
 - -NSTX w/ MSE (140358)
 - NSTX-U w/ CHERs (204202)
 - NSTX-U early H-mode development (202946, 203679, 204112) using NBI #2
 - Evaluate ability of flux-driven transport models to capture evolution of discharge in L- and H-mode ramp-up
- [Q3-4] Free-boundary predictions for NSTX-U
 - Start with validated predictive model of an NSTX-U rampup
 - Examine impact of NBI, outer gap, density, dlp/dt, κ , and/or timing of L-H transition on I_i

Milestone Summary

- 18-2: Demonstrate a framework for breakdown and ramp-up modeling
 - Validate models against experimental results
 - Show simulations can be employed to improve NSTX-U rampup (don't have to solve all the problems yet)
 - Start to answer some pertinent questions (what can mitigate the bobble, how important is the choice of the beams, ...)
- 19-2: Optimize ramp-up for resiliency, low l_i, and stability using predictive models
 - Use TRANSP to improve linearized models for TOKSYS
 - Use TOKSYS to refine control models in TRANSP
 - Produce a solid plan for realizing high-performance discharges when NSTX-U resumes operation

Backup

Typical NSTX ramp-up

LRDFIT modeling focus

TOKSYS modeling focus

TRANSP modeling focus

Linearized models generated for Shot 204118

