

NSTX-U Milestone R18-2: Develop simulation framework for ST breakdown and current ramp-up

Devon Battaglia, Francesca Poli, Dan Boyer, Doohyun Kim, and Pat Vail for the NSTX-U team

FY2018 Q2 Research Milestone Status March 9, 2018

Main elements of FY18 milestone

- Inductive startup calculations using LRDFIT
 - Quantify difference between model and experiment
 - Identify impact of V_{loop} and dl_p/dt on the null quality and field index
 - Includes NSTX-U and MAST-U analysis
- Control modeling focusing on IWL → DN transition
 - Using TOKSYS code from General Atomics
 - Reproduce vertical oscillation at time of diverting in model
 - Investigate control solutions for earlier time of diverting, eliminating vertical oscillation and test resiliency to scenario perturbations
- TRANSP calculations for heating and current drive
 - Compare predictive calculations to NSTX and NSTX-U ramp-up
 - Investigate impact of outer gap, density, NBI, dlp/dt ...

Status of LRDFIT breakdown modeling

- Inductive breakdown simulations for NSTX(-U) and MAST(-U)
 - Demonstrated MAST-U can achieve similar breakdown metrics to NSTX-U within the voltage limits of PF coils
- Remaining goals for FY18:
 - [Q-3] Investigate potential sources of updown asymmetry that scaled with I_{OH} on NSTX-U
 - [Q-4] Quantify impact on null quality and field index with V_{loop} and dI_p/dt on NSTX-U and MAST-U
 - Can we ramp I_D faster following breakdown?

Midplane B_z evolution over first 4 ms

Overview of TOKSYS and SIMULINK development

 FY18 goal: demonstrate a simulation framework for developing and testing shape control in ramp-up

Flux loops, Mirnovs, Rogowskiis

- Aim is to establish closed loop test with PCS
 - End-to-end test and valuable for shot planning work
 - Ability to test algorithm outside of PCS will be maintained
- Simulink connects PCS to TOKSYS or TRANSP
 - TOKSYS provide fast (~ minutes) solution, enables large parameter scans

Q2 activities on TOKSYS and SIMULINK development

- PCS works in SIMULINK evironment
 - Can pipe in archived data, PCS outputs commands into MATLAB work space
 - Issue with number of outputs. Limited to 128 outputs → gets us what we want.
- Improved power supply model in SIMULINK
 - Dan showed slides on SIMULINK model of power supplies, beam model and neural network equilibrium solver
 - See next slides
 - Next step: test PS model with vacuum discharges

Simulink model of power supplies

- Set-up script gets configuration (polarity, number of supplies, power supply resistance, etc.) from MDSplus
- Model accounts for polarity, resistive drop, and rate limits, and latency
 - May need inductance or fine tuned resistances to perfectly match measured voltages
- Resistance increased when current goes the wrong way in unipolar supplies
- Two versions alpha commands or system voltage requests as inputs

Simulink block made for FCPC

- How to handle power supply enable windows automatically?
- Planning to add SPA model next

Tested connection between PCS and FCPC model in a Simulink-based data simserver

- Archived data for shot sent into appropriate PCS input channels
- PCS outputs sent to power supply model
- Configured to be able to get SPA, beam, gas, and LGI outputs
 - Planning to make SPA and beam models next
 - Should work on gas plenum models too

Next step: replace data with model for conductors

- First drive conductors/plasma response model with outputs of power supply model
- Then inject 'measurements' from model into input datastream

Next step: replace data with model for conductors

- First drive conductors/plasma response model with outputs of power supply model
- Then inject 'measurements' from model into input datastream

Fast, realistic beam calculations will enable real-time prediction, improve control and equilibrium reconstruction

NubeamNet

- NUBEAM module provides
 high-fidelity beam deposition
 calculations but is too complex
 for real-time use
- Machine learning has been applied to NSTX-U TRANSP runs to create a real-time capable beam deposition calculator: NubeamNet
 - Heating, current drive, torque, fast ion pressure profiles
 - Neutron rate, beam losses

Fast, realistic beam calculations will enable real-time prediction, improve control and equilibrium reconstruction

NubeamNet

- NUBEAM module provides
 high-fidelity beam deposition
 calculations but is too complex
 for real-time use
- Machine learning has been applied to NSTX-U TRANSP runs to create a real-time capable beam deposition calculator: NubeamNet
 - Heating, current drive, torque, fast ion pressure profiles
 - Neutron rate, beam losses

Promising results from proof-of-principle equilibrium NN

- Calculates equilibrium from conductor currents and pressure, current profiles in ~10us
- Mismatch comparable to differences among rtEFIT, EFIT01, and EFIT02
 - Haven't optimized topology or trained on large data set yet

EFIT01 GSNet

Q2 activities on TOKSYS and SIMULINK development

- Develop TOKSYS models for ramp-up phase
 - Pat has developed and validated wall model for NSTX-U using vacuum shots
 - Pat is leading development of linearized plasma models for NSTX-U ramp-up (20 – 500ms)
 - First test is examining how the interval of updating the linearized model impacts agreement with experiment
- Near term goal: Demonstrate a SIMULINK model that can blend the different models in a time-evolving calculation

Other activities with TOKSYS and SIMULINK development

- [Q-3] Closed loop calculation of an NSTX-U discharge using PCS in simulink with TOKSYS and possibly TRANSP
 - Advances "shot simulator" capabilities
- [Q-3] Evaluate different TOKSYS models in ramp-up
 - Fixed shape, rigid shape, non-rigid linear, grad-Shafranov, NN ...
 - Fixed evolution of current and pressure profile
 - How often does linearized model need to change during different phases of the discharge?
- [Q-4] Reproduce different varieties of "the bobble" at the time of diverting
 - Start to investigate proposed solutions from FY17 milestone

Status of TRANSP calculations

- [Q2-3] Validation of TRANSP model for ramp-up period (Doohyun, Francesca)
 - NSTX w/ MSE (139048)
 - See attached slides
 - NSTX-U w/ CHERs (204202)
 - See attached slides
 - NSTX-U early H-mode development (202946, 203679, 204112) using NBI #2
 - Underway
 - Evaluate ability of flux-driven transport models to capture evolution of discharge in L- and H-mode ramp-up
- [Q3-4] Free-boundary predictions for NSTX-U
 - Start with validated predictive model of an NSTX-U rampup
 - Examine impact of NBI, outer gap, density, dlp/dt, κ, and/or timing of L-H transition on I_i
 - Need to provide target shapes for NSTX-U cases
 - First try an NSTX-U ramp-up where everything happens earlier and faster

Te/Ti prediction initial test for NSTX/NSTX-U

Transport

- NSTX case (139048P61)
 - transport: turbulence (MMM), NC (NEOCH), ExB (TRANSPEXB)
 - MMM: Weiland (e/i), MTM (e), ETG (e)
- NSTX-U case (204202P16)
 - Electron transport: turbulence (MMM), NC (NEOCH), ExB (TRANSPEXB)
 - MMM: Weiland, MTM, ETG
 - Ion transport: Neoclassical only (NEOCH)
- Calculation boundary
 - Central (rho = 0 0.2), core (0.2 0.8), edge (0.8 1.0)
 - Te/Ti calculation in central and core regions
- Equilibrium / poloidal field diffusion
 - TEQ (fixed boundary)
 - Fixed total plasma current (ufile), calculated vloop
 - Default resistivity
- Anomalous Fast Ion Diffusion
 - Constant across minor radius (1e4)
- More test will be done for NSTX-U using 204202P16 setting

Te profiles - NSTX

Ti profiles - NSTX

Total current profiles - NSTX

q profiles - NSTX

0-D parameters - NSTX

Te profiles – NSTX-U

Ti profiles – NSTX-U

Backup

Milestone Summary

- 18-2: Demonstrate a framework for breakdown and ramp-up modeling
 - Validate models against experimental results
 - Show simulations can be employed to improve NSTX-U rampup (don't have to solve all the problems yet)
 - Start to answer some pertinent questions (what can mitigate the bobble, how important is the choice of the beams, ...)
- 19-2: Optimize ramp-up for resiliency, low l_i, and stability using predictive models
 - Use TRANSP to improve linearized models for TOKSYS
 - Use TOKSYS to refine control models in TRANSP
 - Produce a solid plan for realizing high-performance discharges when NSTX-U resumes operation

Modeling tools will focus on different challenges within the ramp-up

TOKSYS control modeling LRDFIT vacuum field calculations Feedforward → GAP → ISOFLUX shape control Null formation, Transition from IWL → DN (L-mode) dB₇/dt with passive stability Vertical stability at high κ **ISOFLUX GAP** 600 500 I_{P} (kA), $P_{NBI}/10$ (kW) 400 TRANSP modeling 300 Diverted shape Pedestal build up following L-H 200 Focus on current, rotation and pressure profile evolution 100 Evaluate stability (vertical, MHD, fast ion) 100 110 120 130 140 150 160 170 50 60 70 80 Time (ms) L-H transition **Divert**

Typical NSTX ramp-up

LRDFIT modeling focus

TOKSYS modeling focus

TRANSP modeling focus

Linearized models generated for Shot 204118

