

Supported by

Erosion and re-deposition of lithium coatings on graphite and TZM molybdenum in support of NSTX-U divertor operations

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehiah U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

Tyler Abrams

M.A. Jaworski, R. Kaita, D.P. Stotler, G. De Temmerman, M.A. van den Berg, H.J. van der Meiden, T.W. Morgan

and the NSTX-U Research Team

APS-DPP 2013 Meeting **Denver**, CO November 12, 2013

Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep

Office of

Motivation: Determining Li coating lifetimes is crucial for NSTX-U plasma performance

- NSTX-U candidate PFCs are Li/B-coated graphite, TZM
- Li lifetime τ determined by:
 - Areal density ρ_{Li}
 - Yield $Y_{Li} = \Gamma_{Li,out} / \Gamma_{D+,in}$
 - Ion flux Γ_{D^+}
 - Re-deposition fraction R_{Li}
- Investigate Y_{Li} and R_{Li} in NSTX-U divertor regime:
 - T_{surf} > 500 °C
 - E_{D+} < 50 eV
 - $n_e > 10^{19} \text{ m}^{-3}$
- Will focus primarily on Y_{Li}

Empirical estimation of Li loss mechanisms during plasma exposure

- Sputtering: $Y_{sputt} = Y_{coll} + Y_{thermal}$
 - Collisional sputtering (TRIM)¹
 - Thermal sputtering²:

$$Y_{thermal} = \frac{A}{\sqrt{T_{Li} + B}} \exp\left(-\frac{U_{Li}}{k(T_{Li} + B)}\right)$$

Evaporation (Langmuir law)

$$Y_{evap} = \frac{1}{\Gamma_{D+}} \frac{p_{Li}}{\sqrt{2\pi m_{Li} k T_{Li}}}$$

• 1-D diffusion into graphite³:

$$D_{\perp}\left(\frac{cm^2}{s}\right) = 4.5 \times 10^{-6} \exp\left(\frac{-0.26 \text{ eV}}{\text{kT}_{\text{Li}}}\right)$$

¹J. Laszlo and W. Eckstein, JNM 184 (1991) 22-29. ²J.P. Allain et al., Phys Rev B 76 (2007) ³N. Itou et al., JNM (2001) 281-285.

Empirical estimation of temperature-dependent Li yield for high-Z substrates $(D_{\perp}=0)$

- Use PISCES data⁴ with **A** and **B** as fit parameters
 - $E_{D+} = 50 \text{ eV}$
 - $-\Gamma_{D+} \sim 10^{21} \text{ m}^{-2} \text{ s}^{-1}$
- Extrapolate to Magnum-PSI/NSTX-U
 - $E_{D+} = 20 \text{ eV}$
 - $-\Gamma_{D+} \sim 5^* 10^{23} \text{ m}^{-2} \text{ s}^{-1}$
- Evaporation will not dominate below 800 °C in Magnum-PSI or NSTX-U

⁴R.P. Doerner et al., JNM 290-293 (2001) 166-172

Magnum-PSI linear plasma device ideal for testing model

- $\Gamma_{D^+} \lesssim 10^{24} \text{ m}^{-2} \text{s}^{-1}$, $T_e \lesssim 3 \text{ eV}$, $n_e \lesssim 8^* 10^{20} \text{ m}^{-3}$
- 7 s pulses, B = 0.25 T at target
- Normal incidence: no magnetic pre-sheath
- Evaporative Li coatings applied in-vacuum

Diagnostic suite provides detailed measurements of plasma and surface

- n_e(r,z), T_e(r,z): Thomson scattering
- n_{Li}(r): derived from camera w/ Li-I filter
- T_{surf}(r): IR camera
 - calibrated against spectrally-resolved pyrometer

IR image of sample

Example Fast Camera Image Li-I emission

🔘 NSTX-U

Inferring Li yields from Li-I emission measurements

• Solve Li⁰ continuity equation with boundary condition:

= 5200 m/s (1 oV)

$$\frac{\partial n_{\rm Li}}{dt} + \nabla \cdot (n_{\rm Li} v_{\rm Li}) = -n_{\rm Li} n_e S_{Li}$$

$$\left. n_{Li} v_{Li} \right|_{z=0} = Y_{Li} \times \Gamma_{D+}$$

- Solve for $n_{Li}(r, z, Y_{Li})$
- Model for Li-I photons / m² s: $I_{Li,model} = \int_{0}^{z_{0}} n_{Li} n_{e} P_{Li} dz$

emissivity coefficient (ADAS)

Photon

Ionization rate coefficient (ADAS)

• Axially averaged measurement:

$$I_{Li,meas} = T \frac{\Omega_{pixel}}{4\pi} \left(\frac{photons}{s}\right)_{meas}$$

• Set $I_{Li,model} = I_{Li,meas} \rightarrow \text{infer } Y_{Li}$

Axially average Li-I emission

Inferred Li yields in Magnum-PSI are much lower than predictions from empirical formula

- Suggests possible
 Li + (D/Mo) interactions
 that suppress erosion
- Uncertainty in *T_{Li}*:
 - IR meas. spread
 - Possible temp. dependence of Li emissivity⁵
- Uncertainty in Y_{Li} :
 - Phantom meas. spread
 - Thompson n_e/T_e error bar

⁵T.J. Tanaka et al., APEX Meeting, April 24-25, 2001

Li-coated graphite shows evidence of Li depletion before entire coating erodes into plasma

 Only 10% of Li on graphite erodes into plasma

 Suggests fast diffusion of Li into graphite occurred

 No Li on graphite surface post-mortem:

$$\boldsymbol{\Phi}_{Li}(t) = \int_0^t \boldsymbol{Y}_{Li}(t') \boldsymbol{\Gamma}_{D+}(t') \ \boldsymbol{d}t'$$

Discussion

- Observed Y_{Li} on TZM Mo << extrapolations from existing data
 Suggests possible suppression of Li erosion via Li + D/Mo bonding
- Fast decrease in Li yield on Li-coated graphite possible indicator of Li diffusion into the bulk
 - Li coating persists longer on TZM Mo (D_{\perp} = 0, R_{Li} > 0.95)
 - Suggests Li on TZM will last significantly longer than Li on graphite in the NSTX-U divertor
- Future work
 - Post-mortem sample analysis to obtain re-deposition profiles
 - Investigate effects of Coulomb collisions & E fields⁶
 - Boron coatings
 - Oblique magnetic incidence

⁶G.A. van Swaaij et al., "Erosion/redeposition modeling in an ITER divertor-like high-density, low-temperature plasma beam", in press

Thank you!

- For more details:
 - Talk from PMIF-PFC 2013 Meeting (available online)
 - Upcoming Fus. Eng. Des. Paper

 Work supported by DOE Contract No. DE-AC02-09CH11466 and DOE Fusion Energy Sciences Fellowship