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Low-frequency (<50kHz) modes commonly induce fast-
lon redistribution/loss on spherical tokamak

® L ow-frequency modes commonly occur at the early-phase of
NSTX discharge. Some cases are associated with certain
internal MHD instability.

> At the onset, the mode frequency generally matches the
plasma rotation

» Low-f mode can cause beta saturation, rotation damping,
and fast-ion redistribution/loss.

® This work investigates the mechanism for the onset of the
internal low-f mode

® Key message of this work: internal mode driven by centrifugal
force

® Centrifugal force is expected to be important for MHD
instabilities in fast rotating plasmas in both present spherical
tokamak (ST) and future facilities based on ST
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Introduction to centrifugal force (CF)
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Low-frequency mode is generally localized in the core region

Mode position for 92 shots in database
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MARS-F is applied to study the effect of centrifugal force on MHD instability
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Centrifugal force drives an internal instability
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@ Centrifugal force drives an internal instability. Here, resistive interchange mode is stable (D<0).
€ Turning off both Coriolis and Centrifugal forces, no instability is found in computation.
€ At the marginal point, plasma resistivity slightly enhances the instability
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Centrifugal force drives an internal instability (cont’'d)
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> Predicted critical value of rotation is L

close to the experimental value (0.24)
with the discrepancy <18%.
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» Mode frequency (0.24) agrees well
with the experiment (0.22) with the <002
discrepancy ~8%.
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Density gradient plays an important role in centrifugal
force in the studied case
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» Radial position of the mode sensitively depends on the density profile

> Critical rotation for driving mode decreases as density gradient increases. Experimental
1/Ln has a big uncertainty and, the possible value of 1/Ln is in the region [-3.5, 1.4].
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Simulated displacement agrees with experiment
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Simulated displacement agrees with experiment (cont'd)

Soft x-ray (SXR) data is used to check the
consistency with simulated mode structure in
the core region.

() Inverse layer position of S1 in computation
agrees with experiment. The inverse layer
position has a strong dependence on the mode
position.

(ii) In chords 1-4, simulation agrees well with
experiment. Simulated S1 at chord 6 has a poor
agreement with experiment.

(iif) Discrepancy between the simulated and
measured USXR is probably caused by
uncertainty in the USXR weight function in the

modelling.
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Resonance between the mode and fast ions is NOT important for

the studied case

E fast ion=75 keV

€ Both the toroidal and poloidal frequencies of fast 150 e
jons are computed i
€ Spatial region for computing orbit is limited in the _
mode extension region (100-120cm). The 1oL
corresponding deposition of fast-ion distribution i
is extracted from TRANSP W
(i)
€ For the mode frequency, three cases are
considered: 0, -5 and 5 kHz in plasma frame 0.5r
€ Direct MARS-K computations also confirm minor
role played by fast-ion resonances I
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Summary

B Some low-f modes in NSTX are internal instabilities driven by the
centrifugal force.

»  Simulated characteristics of internal instability consistent with experiment.
Predicted critical rotation amplitude for driving mode is close to the experimental value.
Mode frequency agrees well with the experiment value

Shape of the normal displacement basically agrees with the measurements.

At the onset of the mode, resonance between the mode and fast ions is NOT important.

> Mechanism for driving internal mode insensitive to the uncertainty of reconstructed
g-profiles

> Density gradient plays an dominant role in centrifugal force for the studied case

B Next step: Combine MARS-F with tracking particle code, such as SPIRAL and
ORBIT, to study the effect of the mode on the fast-ion redistribution.
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« Back-up slides
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What’s NSTX?

» National Spherical Torus Experiment

. ) . Major radius 0.85m
(NSTX) is a magnetically confined Rniihicall 13
fusion device with low aspect ratio Elongation 27
. Triangularity 0.8
(spherlcal tOkamak) Plasma current ~ 1 MA
Toroidal field <06T
* One benefit: reach higher normalized Pulse length <2s

pressure (beta N), compared with the
conventional tokamak

3 Neutral Beam sources
Pyg< 6 MW

Einjection S 95 keV

1 Vool Vaen <5

e One mission : Advance the Spherical
tokamak (ST) as a candidate for a
Fusion Nuclear Science Facility

@DNSTX—U 59th APS-DPP meeting, G.Z.Hao et.al., Oct.23- Oct..27, 2017

14



Formula for USXR modelling

So=[&W,)dl, & =nnf(T,)

S, = j e, (v, 0,1)dl, e, = Re(e'™'&- Vs)—2 ‘9‘90
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Resistive interchange index DR<O in the whole spatial region

log(-DR)
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Simulated S; is insensitive to a slight variation of S,
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More information for different g-profiles

* Different g-profiles are generated by LRDFITO09, but
with slightly different P-prime setting, such as :

Cases as P-prime MSE absolute
label in error(degree)
slide 7

QP1 0.0, 0.25, 0.75, 0.875 0.3847
QP2 0.0, 0.25, 0.7, 0.875 0.4126
QP3 0.0, 0.25, 0.705, 0.89 0.4579

QP4 0.0,0.2, 0.4, 0.6, 0.8 0.316
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Discussion about the equilibrium rotation

® g-file generated by LRDFIT - CHEASE - MARS-F

® LRDFIT reconstruction of the equilibrium includes the measured qg-profile for the
rotating plasma. Safety factor is the key equilibrium quantity affecting MHD stability.

® CHEASE is a static equilibrium code, which supplies the numerical equilibrium for
MARS-F .

B \We neglect the effect of rotation on equilibrium, which leads to the below concerns.

» Magnetic axis positon from CHEASE is about 4cm smaller than that from LRDFIT. During the comparison
between simulated and measured USXR, the above axis shift is compensated by horizontally shifting the
whole plasma.

» The density gradient in poloidal direction is neglected, which slightly affect the mode growth rate in theory
though the second GAM. However, this kind of GAM is not reported in both conventional and spherical
tokamaks as we know.

» Given the good agreement between MARS-F simulation and experiments, it is reasonable to believe that the
effect of rotation on equilibrium will NOT qualitatively change our key conclusions.

A0\
@ONSTX-U 59th APS-DPP meeting, G.Z.Hao et.al., Oct.23- Oct..27, 2017 19 19



More information about density scale length
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