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L-H transition is defined as …

• It is the sudden transition to a state of good energy confinement:  
•  Expected mode of operation for ITER. 

• It appears as heating power increases past some threshold.
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While H-mode was discovered 35 years ago, its triggering 
mechanism is not yet understood

Wagner PRL (1982)
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General paradigm leading to L-H transition: energy 
balance

3

Gradient drive

Equilibrium shear 
flow

Turbulence Zonal flow 

Turbulent dissipation

Damping

⇒ ⇒
shearing shearin

g

Instabilities

Reynolds work



Energy transfer to zonal flows directly depletes the turbulent 
fluctuations.

Flow shear depletes the turbulence in other ways

Two main mechanisms can occur for turbulence 
suppression by flow shear 
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2
NSTX data cannot rule out such mechanisms.

NSTX L-H transitions are inconsistent with the depletion of 
turbulence due to energy transfer to zonal flows

Biglari, Diamond,and Terry, 
Phys. Fluids B 2, 1 (1990)

Diamond et.al, Phys. Rev. Lett. 72, 2565 (1994). 

n0mihṽ2
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Outline

•Previous results on energy transfer during the L-H transition 

•Description of the NSTX gas-puff imaging system  

•Tests of novel velocimetry technique using synthetic data 

•Energy transfer dynamic across the L-H transition 

•Summary
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Some experimental investigations showed a transfer of energy 
from turbulence to mean flow

Studies on EAST using Langmuir probes provided evidence of nonlinear 
exchange of kinetic energy between small scale turbulence and edge zonal 
flows. 

Work on C-Mod using gas-puff imaging (GPI) provided a timeline for the L-H 
transition:

•First peaking of the normalized Reynolds power 
•Then the collapse of the turbulence 
•Finally the rise of the diamagnetic electric field shear  

On DIII-D, heating power increases the energy transfer from turbulence to 
the poloidal flow.
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Manz et al. PoP 19 072311

Cziegler et al. PPCF 2014

Yan et al. PRL 2014
See Review paper Tynan PPCF 2016

Xu et al. NF 54 (2014)
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Other experimental investigations do not show a key role for 
Reynolds stress

AUG  showed experimental evidence of the role of the 
neoclassical flows in the L–H transition physics. 
•Poloidal flows were close to neoclassical over almost the entire L-H 
transition, including I-phase 

JFT-2M showed that the observed Reynolds force is far too low to 
drive the E × B flow modulation
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Cavedon et al. Nucl. Fusion 57 (2017) 014002

Kobayashi et al. Nucl. Fusion 54 (2014) 073017



Zweben et al., Rev. Sci. Instrum. 88, 041101 (2017)

GPI provides edge turbulence images

Gas-puff imaging (GPI) diagnostic is central to the NSTX L-H transitions analysis
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GPI provides edge turbulence images 

-Views neutral Dα light emission 

-Temporal resolution ~ 2.5 𝜇s;  

-Spatial resolution ~ 1 cm over 24 x 30 cm  

-L-H transition as a sudden (~100 µs) decrease in 
edge turbulence

Gas-puff imaging (GPI) diagnostic is central to the NSTX L-H transitions analysis
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Clear drop in fluctuation levels across the L-H transition, but no 
systematic change of turbulence quantities preceding the transition 
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All turbulence quantities (averaged over 17 discharges) 
 nearly constant at all radii up to 3 cm inside the separatrix during 3 msec before transition

What causes the drop in fluctuation levels across the L-H transition? 

Can direct energy transfer from turbulence to mean flow explain this?
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Poloidally-averaged velocities and kinetic energies do not exhibit 
changes prior to the L-H transition 
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p
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These quantities are averaged in poloidal angles and in time (over 30 𝜇s) 
and over multiple shots

It is expected that flow shear suppression of turbulence would show   
some detectable change in the flow just before the L-H transition

R- Rsep = -1 cm R- Rsep = -1 cm



• Method:  a robust generalization of optical flow 
that enforces divergence-free velocity 

• This approach has a time resolution limited 
only by the frame rate, and an effective spatial 
resolution set by the intensity structure size 

• Caveats:  
- Velocimetry techniques show only velocities normal 

to the intensity iso-contours. 
- This caveat is shared by all velocimetry approaches.
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A novel velocimetric 
approach was applied to GPI

12

Stoltzfus-Dueck  - in preparation  
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Comparison between ExB velocities and velocities 
determined from velocimetry

14

ExB velocities from 
simulations 

Synthetic data obtained  
from BOUT++  simulation  

courtesy N. Bisai, IPR 
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Novel velocimetry analysis agrees with the fluctuating 
components of the ExB velocity from BOUT++
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Novel velocimetry analysis agrees with the fluctuating 
components of the ExB velocities from BOUT++
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Velocimetry analysis captures poloidally averaged 
mean flow from synthetic data with fixed offset

• Apparent rigid shift was found to 
be due to drift wave propagation. 

• Such a shift does not change our 
principal conclusions
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•Zonal fluctuations tend to have lower frequencies than non-
zonal 

• Reynolds decomposition should be applied to the whole flux 
surface 

• However, GPI view is limited to a 24 x 30 cm patch of the flux 
surface
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We decompose the velocity field into zonal and non-zonal 
components

18

Low-pass frequency filter should be able to approximately 
separate the zonal (~lower-frequency) 

 from non-zonal (~turbulent, higher-frequency) components.NSTX
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Energy transfer direction is determined using the 
production term

A positive production term indicates the depletion of turbulence
20
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Thermal free energy is an additional reservoir for the 
turbulence energy

See paper for details 
Stoltzfus-Dueck, PoP 23 054505 (2016)
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We test the suppression of turbulence via energy 
transfer from turbulence to mean flow

22

Is the absolute value of the production term big 
enough to affect the turbulence energy?



•Ratio needs to be around 1 to cause 
turbulence suppression. 

•Ratio is much less than 1 so inconsistent with 
the turbulence depletion.

Production term is much less than the turbulent 
free-energy supply
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Assuming uncertainties in Reynolds stress estimate,  
what is an upper bound the production term?ö

Assuming interchange or 
drift wave turbulence 
evaluated for NSTX
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Simplified estimates of the Reynolds work provide an 
upper bound for the production term
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Simplified estimates of the Reynolds work provide an 
upper bound for the production term
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We test the suppression of turbulence via energy 
transfer from turbulence to mean flow

26

Does the energy in the mean flow increase as 
much as the turbulence energy drops?



Does the zonal flow absorb a significant fraction of the 
total turbulence energy?

Stoltzfus-Dueck, PoP 23 054505 (2016)

For zonal flows to take most of the 
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Kinetic energy in the mean flow is always much 
smaller than the L-mode thermal free energy
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⌘ ⌧ 1
Too weak to explain  

the rapid turbulence suppression at  
the L-H transition.

NBI



Does enough energy pass through poloidal flow 
damping to disturb the turbulent energy balance?
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Does enough energy pass through poloidal flow 
damping to disturb the turbulent energy balance?
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Summary:Energy balance

•We consider the following energy balance to evaluate the turbulence 
depletion: 

-Most experimental results neglected the thermal free energy
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NSTX results do not support that energy transfer to flows 
directly depletes the turbulent fluctuations

The turbulence quantities change across at the L-H transition but not before, so the 
changes do not help identify the L-H trigger mechanism. 

• Poloidal velocities do not change prior to the L-H transition 

 Energy-transfer mechanism appears much too weak to explain the rapid 
turbulence suppression at the L-H transition. 

   Uncertainties in 2D velocimetry may be order unity, but the energy transfer 
mechanism is ~100x too small to explain the turbulence suppression. 
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Analysis does not rule out zonal flow playing a role in affecting the 
turbulence dissipation channel
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Supplementary material
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Summary: energy balance

34

Gradient drive

Equilibrium shear

Turbulence Zonal flow 

Turbulent dissipation

Damping

⇒ ⇒
shearing shearin

g

Instabilities

Reynolds stress

Analysis does not rule out zonal flow playing a role in affecting the 
turbulence dissipation channel



APS-DPP - 2017 - Energy Dynamics L-H Transition

BOUT++ simulations for testing velocimetry
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BOUT++ simulations for testing velocimetry
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L-H transition is associated with an increase of the autocorrelation time

36

•   Average autocorrelation time =22 µsec in L and 34 µsec in H-mode 

•   Average dVpol/dr= - 1.1 km/s/cm in L and - 0.85 km/s/cm in H-mode 
 



APS-DPP - 2017 - Energy Dynamics L-H Transition

Velocity shear estimates

37


