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Overview

Optimization of vertical control on NSTX-U is critical to achieving high
performance

— High elongation improves beta limits, increases bootstrap current

— Oscillation-free control improves confinement and diagnostic quality

— NSTX-U operates at increased aspect ratio

Improvements to the control system were made for the last campaign

— Was able to realize elongation vs. |, operating space similar to NSTX but at
higher aspect ratio

— Shots typically evolved to high |, limiting achievable elongation
To study control limits, a database of VDEs and vertical oscillations

on NSTX and NSTX-U was generated
— Specific attention paid to oscillations in ramp-up phase

Results provide guidance for future work:
— Ramp-up optimization
— Scenario development

— Control system improvements This research was supported by the U.S.
Department of Energy under contract number

DE-AC02-09CH11466
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NSTX-U improves controllability and brings
about new control requirements
 New opportunities to use feedback control to optimize
performance as a result of:

— Longer pulse length, increased toroidal field, increased heating
and current drive

« Advanced control will be necessary for achieving
many operational goals, e.g.,

— Non-inductive scenarios, snowflake divertor, rotation control,
current profile control
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Additional voltage differences improve
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estimation of vertical position

« ~60 NSTX-U equilibria generated with ISOLVER
free boundary code

* Flux loop weights determined by least squares fit
to IpZp

» Optimal weights will be established based on

EFIT reconstructions of experimental discharges
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Kalman filtering used to improve noisy, low
signal-to-noise flux differences
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Notch and median filtering added to remove
power supply ripple and MHD events
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At time of maximum stored energy, NSTX-U operated in
elongation vs. li space similar to NSTX

« Database of achieved elongation at time of maximum
stored energy
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1. Extended NSTX trends to higher internal inductance
2. Similar elongation at mid-range internal inductance
3. Occasionally reached higher elongation, low |li space
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Comparing all EFITO1 slices for NSTX and NSTX-U: operated
along similar paths, but NSTX achieved high elongation early
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High-l, L-mode
fiducial used in
commissioning 2.4

2.2
2.0

1.8

Continued NSTX 14|
trend at higher |,

_——— e —— = -

1.4
0.40.60.81.01.21.41.61.8

NSTX-U

li

3.6
3.3
3.0
2.7
2.4
2.1
1.8
1.5

—— e ——————— o

1.4
0.40.60.81.01.21.41.61.8

l;

Log scale histogram of all EFIT01 slices for t<0.3s

NSTX-U

typically had

low [; early, but ¢
low elongation

1.4
0.40.60.81.01.21.41.61.8
l;

NSTX-U

NSTX

L Db R

1.4
0.40.60.81.01.21.41.61.8

li

4.0
3.6
3.2
2.8
2.4
2.0
1.6

Typical NSTX
low-l, H-mode

Most frequent
NSTX operation
along these
lines

NSTX reached
final elongation
and |, early on

@NSTX-U APS-DPP 2017, Vertical stability limits on NSTX-U, M.D. Boyer, October 23-27, 2017



Longest NSTX H-mode shots occurred at low li and high
elongation; NSTX-U exceeded these shots in L-mode despite
operating at high li, low elongation
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Database of VDE times generated to
assess limits and triggers for VDEs
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Probability of VDE higher at lower
elongation for NSTX-U
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Caveats:

* Much smaller data set for
NSTX-U

« NSTX-U shots dominated

by

control commissioning,
error field identification
experiments,

ramp-up optimization
experiments
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Elongation vs. |, at the time of VDEs for NSTX-U illustrates
Increase in VDE limit as campaign progressed
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« High elongation shots typically seem to move toward higher |, during VDE
» Likely caused by H-L back transition
* Results in increased growth rate, challenging control
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Growth rate calculations will guide
projection of limits to planned scenarios

« Using ISOLVER to calculate open loop vertical growth rate [Menard]
 Calculations done at a time just before each VDE in the database
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« Many ‘VDESs’ occur below the limit for both devices

— some at very low growth rate

Internal inductance
« Maximum growth rates for NSTX-U and NSTX similar, maybe slightly higher for
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Database of vertical motion at time of
diverting, used to classify of behavior
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Shots with large oscillations typically had positive drsep
and up-down asymmetry in shape control errors
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Vertical growth rate typically increased rapidly at time of
diverting due to rapid increase in inner gap size
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Oscillations appear to be sustained by ‘kicks’
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Size of kicks varies with vertical growth

rate, vertical motion, and equilibrium
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Upgrades made to control algorithms will eliminate or
reduce severity of the potential causes of oscillations

* Multi-threading of rtEFIT

— Enable faster reconstruction and/or
vessel current fitting
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Neural network trained on growth rate calculations, can be used to
study trends or adjust shape to avoid VDEs
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« Provides some guidance in
designing target equilibrium

* Planning to fit to probability of
VDE to provide real-time
indicator likelihood of loss of
control

« Working on improving the fit...
» Multiple NN used to provide sense of
uncertainty
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State-machine-based shutdown handler was used to end shots
when VDE detected - future version planned to end or alter shot

when approaching VDE limits
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Conclusions and outlook

* Improvements to vertical control helped achieve an operating
space similar to NSTX, now at higher aspect ratio
— However, NSTX-U typically operated at high |,

« Database of VDEs generated to assess elongation limits
 Largest difficulty for vertical control was around time of diverting

» Large oscillations seem to be initiated by motion near the time
of diverting and sustained by kicks

— Improvement to ISOFLUX removes need for algorithm transitions near
time of diverting

— Multi-threading of tEFIT should improve reconstruction near time of
diverting

— Inner gap control will reduce overshoot and associate high growth rate
— Oscillations sustained by growth rate and equilibrium dependent ‘kicks’
» Modeling underway to find a suitable equilibrium that is less sensitive
* Model of growth rate and VDE probability planned for use in
real-time VDE avoidance algorithm
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Vertical control challenges during ramp-up often occurred
near time of diverting and transitioning to H-mode

Improvements to vertical control system helped achieve
elongation vs. | at peak stored energy similar to NSTX at

higher aspect ratio

PCS upgrades and modeling work aim to avoid
oscillations and VDEs in the next campaign
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