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This work presents the development of an advanced framework for control of the global
plasma shape and its application to a variety of shape control challenges on NSTX-U.
Operations in high-performance plasma scenarios will require highly-accurate and
robust control of the plasma poloidal shape to accomplish such tasks as obtaining the
strong-shaping required for the avoidance of MHD instabilities and mitigating heat flux
through regulation of the divertor magnetic geometry. The new control system employs
a high-fidelity model of the toroidal current dynamics in NSTX-U poloidal field coils
and conducting structures as well as a first-principles driven calculation of the
axisymmetric plasma response. The model-based nature of the control system enables
real-time optimization of controller parameters in response to time-varying plasma
conditions and control objectives. The new control scheme is shown to enable stable
and on-demand plasma operations in complicated magnetic geometries such as the
snowflake divertor. A recently-developed code that simulates the nonlinear evolution of
the plasma equilibrium is used to demonstrate the capabilities of the designed shape
controllers. Plans for future real-time implementations on NSTX-U and elsewhere are
also presented.

Abstract
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• The use of advanced divertor configurations, such as the snowflake divertor (SFD), is being
considered as a possible means of reducing peak heat flux onto divertor surfaces in NSTX-U.

• Develop an algorithm that is capable of real-time control of all divertor configurations of
interest in NSTX-U.

• Address primary limitations of the algorithm as previously implemented on DIII-D:

– Stable control of the SFD-Plus configuration.

– Recovery from high-field-side to low-field-side SFD-Minus.

• Transition to model-based (non-PID) plasma shape control for NSTX-U.

Introduction

Goals of this work

Highlights

• New modeling of X-point position response to PF coil currents.

• PID-based control of the SFD with closed-loop controller tuning using relay feedback.

• Initial development of model-based Linear-Quadratic-Integral control of the plasma shape.

E. Kolemen et al. J. Nucl. Mater. (2015).
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Formalism for plasma shape control modeling
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Coupled circuit equations describing dynamics of toroidal currents in coils, 
passive structures, and plasma.
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Linearized circuit equations
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State-space representation of the dynamics

Express the linearized circuit equations in state-space form 
for use with model-based control design tools
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Perturbed voltages cM(t) = M+X(t)
Time-dependent 

mutual inductance matrix

Vacuum mutual inductances 

Effective mutual inductance 
due to plasma motion
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Validation of the no-plasma model
Wall model validated by comparing synthetic and measured magnetic diagnostic signals 

for NSTX-U vacuum shots. 

Measured
Predicted
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Dominant eigenmodes of the vacuum vessel
L/R = 32 ms

L/R = 26 ms

L/R = 26 ms

L/R = 23 ms

L/R = 19 ms

L/R = 19 ms

L/R = 13 ms

L/R = 11 ms

Future validation efforts will seek to identify source of the asymmetry in the vessel model.  
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Output equation for ISOFLUX control

State-space dynamics equation paired with output 
equation relating the inputs (voltages) and states 

(currents) to quantities of interest for control.

Control point
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Modeling of X-point response
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Green’s functions for the 
coil-only vacuum fields

Outputs of a 
linear plasma response model
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Response of X-point position to B-field

1. Expand the flux function as a series to second-order.
Solve for the series coefficients using measurements of Br
and Bz at two points.

2. Solve for the (r,z) coordinates of the X-point.

3. Compute derivatives of (rx,zx) with respect to Br and Bz .

Sample points near the null
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2 + 2q2xv + q3v

2
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Snowflake Shape Descriptors

Four parameters 
used for control
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SFD control system with PID control
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Magnetics

Grad-Shafranov equilibrium reconstruction
J. R. Ferron et al. Nucl. Fusion. (1998).
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from SFD errors 

to PF coil 
current errors
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position 
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Locate snowflake using local expansion of flux
D. D. Ryutov et al. Plasma Phys. Control. Fusion. (2010).
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PID Control and Controller Tuning
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Snowflake radius scan in SFD-Minus

Scenario 1: Scan of the X-point separation in the SFD-Minus configuration.

t = 300ms t = 380ms t = 425ms

t = 500ms t = 600ms t = 700ms
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Snowflake radius scan in SFD-Plus

Scenario 2: Scan of the X-point separation in the SFD-Plus configuration.

t = 200ms t = 275ms t = 350ms

t = 450ms t = 500ms t = 600ms
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Snowflake angle scan at constant separation

Scenario 3: Scan of the angular orientation with constant X-point separation.

t = 200ms t = 300ms t = 400ms

t = 500ms t = 600ms t = 700ms
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• Test the designed controllers for the SFD in-the-loop with free-
boundary Grad-Shafranov equilibrium solver (for verification of
controller performance).

• Integration of the SFD control into a model-based shape
controller designed with LQI for reference tracking of plasma
shape parameters.

• Implementation of PID-based and LQI-based controllers for the
SFD in the DIII-D and NSTX-U plasma control systems.

• Test the new algorithms in DIII-D SFD scenarios.

Future work


