

Energetic-particle-modified global Alfvén eigenmodes

Jeff Lestz, Elena Belova, Nikolai Gorelenkov Princeton Plasma Physics Lab

> 59th APS-DPP Meeting Milwaukee, WI October 23 – 27, 2017

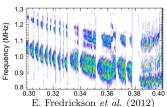
Motivation

Why study GAEs in NSTX-U?

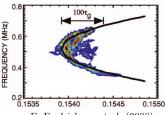
- GAEs (and CAEs) have been linked to anomalous T_e flattening at high beam power in NSTX¹
- Recently shown to be suppressed by off-axis neutral beam injection²

E. Fredrickson Invited Talk NI3.00005 Wednesday 11:30 AM

- Avalanches and chirping can generate large fast ion losses
 - Presents opportunities to probe nonlinear physics



E. Fredrickson *et al.* (201) Nucl. Fusion **52**, 043001



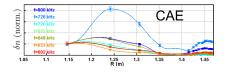
E. Fredrickson *et al.* (2006) Phys. Plasmas **13**, 056109

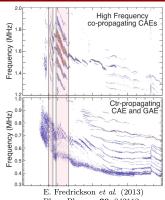
²E. Fredrickson et al. Phys. Rev. Lett. **118**, 265001 (2017)

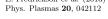
¹D. Stutman *et al.* Phys. Rev. Lett. **102**, 115002 (2009)

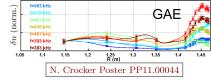
Sub-cyclotron Alfvén Eigenmodes in NSTX

- High frequency Alfvén eigenmodes routinely excited in NSTX(-U) plasmas by neutral beam injection
 - Driven by Doppler-shifted cyclotron resonance with fast ions $\omega \left\langle \textit{k}_{||} \textit{v}_{||} + \textit{k}_{\perp} \textit{v}_{\text{Dr}} \right\rangle = \ell \left\langle \omega_{\textit{ci}} \right\rangle$
- Identified as combination of compressional (CAE) and global (GAE) Alfvén eigenmodes
 - Co-/cntr-propagating $|n| \approx 3 14$
 - $-~\omega/\omega_{ extit{ci}}pprox 0.1-0.7~(\gg\omega_{ extit{TAE}})$









Perturbative GAE Properties

- Weakly damped GAEs may exist below minimum of Alfvén continuum
 - Approximate dispersion $\omega \leq [k_{\parallel}(r)v_A(r)]_{min}$
- Shear Alfvén mode: $\delta B_{\perp} \gg \delta B_{\parallel}$
 - In NSTX conditions, also have large compressional component $\delta B_{\parallel} pprox \delta B_{\perp}$ near edge
- Perturbative assumption
 Fast ions provide drive but do not modify mode properties



n = -3 GAE calculated by NOVA in NSTX³

³N. Gorelenkov *et al*. Phys. Plasmas **11**, 2586 (2004)

Hybrid Simulation Method

- Hybrid MHD and Particle code (HYM)⁴
 - Single fluid resistive MHD thermal plasma
 - Full orbit kinetic fast ions with δF scheme
- Initial value code in 3D toroidal geometry
- Linear fluid equations and unperturbed particle trajectories
 - Includes nonlinear physics (not used for this study)
- Self-consistent equilibrium including energetic particle effects

$$\frac{\partial^2 \psi}{\partial z^2} + R \frac{\partial}{\partial R} \left(\frac{1}{R} \frac{\partial \psi}{\partial R} \right) = -R^2 P' - HH' - GH' + RJ_{b\phi}$$

$$m{B} =
abla \phi imes
abla \psi + h
abla \phi \qquad h(R,z) \equiv H(\psi) + G(R,z) \qquad m{J_{b,\mathrm{pol}}} =
abla G imes
abla \phi$$

---- pressure anisotropy, increased Shafranov shift, more peaked current

⁴E. Belova et al. Phys. Plasmas **10**, 3240 (2003)

HYM Physics Model

Fluid thermal plasma

$$\rho \frac{d\mathbf{V}}{dt} = -\nabla P + (\mathbf{J} - \mathbf{J_b}) \times \mathbf{B}$$

$$- en_b(\mathbf{E} - \eta \delta \mathbf{J}) + \mu \Delta \mathbf{V}$$

$$\mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \delta \mathbf{J}$$

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

$$\mu_0 \mathbf{J} = \nabla \times \mathbf{B}$$

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{V})$$

$$\frac{d}{dt} \left(\frac{P}{\rho^{\gamma}}\right) = 0$$

Kinetic fast ions

$$egin{aligned} rac{doldsymbol{x}}{dt} &= oldsymbol{v} \ rac{doldsymbol{v}}{dt} &= rac{q_i}{m_i} \left(oldsymbol{E} - \eta \delta oldsymbol{J} + oldsymbol{v} imes oldsymbol{B}
ight) \end{aligned}$$

δF Scheme

$$F = F_0(\mathcal{E}, \mu, p_\phi) + \delta F(t)$$

$$w \equiv \delta F/F$$

$$\frac{dw}{dt} = -(1 - w) \frac{d \ln F_0}{dt}$$

- ρ, V, P are plasma mass density, velocity, and pressure
- n_b, J_b are beam ion density and current
 - Assuming $n_b \ll n_e$ but allowing ${m J_b} \approx {m J_{th}}$

Fast Ion Distribution

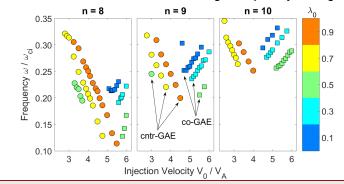
- Equilibrium distribution $F_0 = F_1(v)F_2(\lambda)F_3(p_\phi, v)$
 - Energy $\mathcal{E} = \frac{1}{2} m_i v^2$
 - Trapping parameter $\lambda = \mu B_0 / \mathcal{E} \approx \mathcal{E}_{\perp} B_0 / \mathcal{E} B$
 - Passing: $0 < \lambda < 1 \epsilon$
 - Trapped: $1 \epsilon < \lambda < 1 + \epsilon$
 - Canonical angular momentum $ho_\phi = -q_i \psi + m_i R v_\phi$

$$egin{aligned} F_1(v) &= rac{1}{v^3 + v_c^3} \quad ext{for } v < v_0 \ F_2(\lambda) &= \exp\left(-\left(\lambda - \lambda_0
ight)^2/\Delta\lambda^2
ight) \ F_3\left(p_\phi, v
ight) &= \left(rac{p_\phi - p_{ ext{min}}}{m_i R_0 v - q_i \psi_0 - p_{ ext{min}}}
ight)^lpha \quad ext{for } p_\phi > p_{ ext{min}} \end{aligned}$$

- NSTX: $v_0/v_A \lesssim 5$, $v_c \approx v_0/2$, $\lambda_0 = 0.7$, $\Delta \lambda = 0.3$, $\alpha = 6$
- Simulations expand to $v_0/v_A=2-6$, $\lambda_0=0.1-0.9$

Self-Consistent Equilibrium Simulations

- GAE frequency changes dramatically with v₀/v_A for all n
 Can change by 20 50%, or 100 500 kHz
- Change is *continuous* to at least $\Delta v_0 = 0.1 v_A$ resolution
 - Uncharacteristic of excitation of distinct MHD modes with discrete frequencies
- In contrast, CAEs do not exhibit large frequency changes



EP Effects on Frequency

 Two independent ways EPs can affect the most unstable mode frequency

Equilibrium Changes to EP distribution can modify self-consistent equilibrium, shifting continuum

Phase Space Moving EP in phase space changes range of accessible resonances

- $\mathcal{J} \equiv n_b v_0/n_e v_A \propto J_{\rm beam}/J_{\rm plasma}$ characterizes EP influence
- Varying n_b/n_e independently determines frequency dependence due to equilibrium changes alone

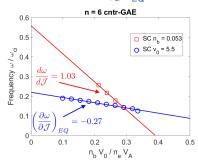
Methods to Separate Frequency Effects

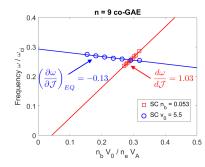
- Calculating "MHD only" equilibrium without EP effects and varying v₀/v_A isolates dependence on EP phase space
 - Computed with same total current as self-consistent case
 - EP pressure absorbed into thermal pressure

	Equilibrium Effect	Phase Space Effect	Total Effect
Equilibrium	Self-consistent	MHD only	Self-consistent
Vary	n_b/n_e	v_0/v_A	v_0/v_A
Fix	v_0/v_A	n_b/n_e	n_b/n_e

Equilibrium Effect on Frequency

- EP-induced changes to equilibrium not large enough to account for change in frequency
- Red squares: simulations with $n_b = 0.053$, varying v_0/v_A
- Blue circles: simulations with $v_0/v_A = 5.5$, varying n_b
 - Slope $\left(\frac{\partial \omega}{\partial \mathcal{I}}\right)_{FO}$ is effect due to changes in equilibrium

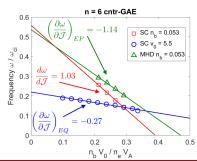


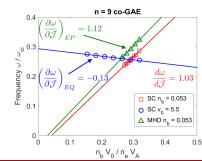


MHD Equilibrium Simulations

- EP phase space produces most of change in frequency
- Green triangles: simulations with $n_b = 0.053$, varying v_0/v_A with a single "MHD" equilibrium
 - Slope $\left(\frac{\partial \omega}{\partial \mathcal{I}}\right)_{EP}$ is effect due to changes in EP phase space
- Equilibrium and EP phase space effects are nearly linear

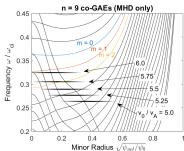
$$\frac{\text{d}\omega}{\text{d}\mathcal{J}} \approx \left(\frac{\partial\omega}{\partial\mathcal{J}}\right)_{\text{EQ}} + \left(\frac{\partial\omega}{\partial\mathcal{J}}\right)_{\text{EP}} = n_{\text{e}}v_{\text{A}}\left[\frac{1}{v_{0}}\frac{\partial\omega}{\partial n_{\text{e}}} + \frac{1}{n_{\text{e}}}\frac{\partial\omega}{\partial v_{0}}\right]$$





Mode Locations Relative to Alfvén Continuum

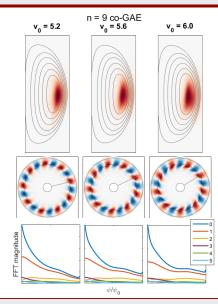
- Modes are not localized near minimum of continuum
- Modes intersect continuum, but do not have singular structure
- m ≈ 0 structure, yet frequencies are far from this branch
- Caveat: continuum does not include kinetic fast ions
 - e.g. kinetic Alfvén wave including beam ion FLR $\omega = k_{\parallel} v_A \left(1 + \frac{n_b}{n_e} \frac{k_{\perp}^2 \rho^2}{1 + k_{\perp}^2 \rho^2}\right)$
 - For $n_b/n_e = 0.2$, $k_{\perp}\rho \approx 2$, kinetic ion term can be 15%.



n=9 continuum for the "MHD only" equilibrium, including EP pressure as part of total plasma pressure. Calculated by NOVA with $|m| \leq 22$

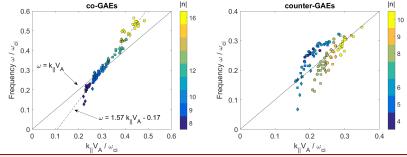
Mode Structure of co-GAEs

- Mode structure does not change qualitatively with frequency
 - Slight changes: peak location moves gradually inwards, mode becomes slightly elongated
- Frequency changes \approx 20% from $\omega/\omega_{ci}=$ 0.24 to 0.29 ($\Delta\omega=$ 125 kHz) due to 15% change in v_0/v_A
- Remains dominated by m = 0 harmonic



Inferred Dispersion

- Frequencies are near *local* shear Alfvén dispersion
 - $-\omega \approx k_{\parallel} v_{A} \pm 20\%$ evaluated at mode location
 - k_{\parallel} calculated as peak of FT of flux surface average of δB_{\perp}
 - $k_{\parallel} \approx (n m/q)/R_0$ is an unreliable approximation here
- co-GAEs are well-fit by dispersion $\omega = 1.57 k_{\parallel} v_A 0.17$
- cntr-GAEs have larger spread, likely due to larger range of m
- Accurate dispersion must include EP nonperturbatively

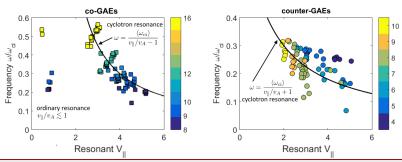


Resonance Implies Frequency Change

- Time evolution of particle weights identifies resonant particles
- Combination of dispersion and resonance yields frequency dependence on v_{||}^{res}

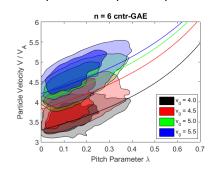
$$\omega = rac{\left\|\left\langle \omega_{ci}
ight
angle}{\ell + \left\langle v_{\parallel}
ight
angle / v_{A}} \quad ext{where } \ell = - ext{sign } k_{\parallel}$$

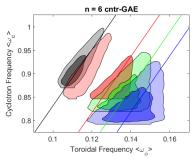
• Unresolved: how does $v_{||}^{res}$ depend on v_0/v_A quantitatively?



Frequency Determined by Resonant Particles

- Resonant particles move to higher energy as v_0/v_A increases
- In $\langle \omega_{\phi} \rangle$, $\langle \omega_{ci} \rangle$ coordinates, particles with largest weights cluster around resonances: $\omega n \langle \omega_{\phi} \rangle p \langle \omega_{\theta} \rangle = \ell \langle \omega_{ci} \rangle$
- Frequency of mode is being set by location of resonant particles in phase space – characteristic of EPMs



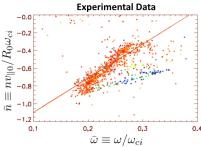


Experimental Clues

- Experimental analysis⁵ of many NSTX discharges shows cntr-GAE frequency decrease with increasing |n|
 - Opposite trend expected from dispersion

$$\omega = -k_{\parallel} v_{A} \propto -n$$

- Resonance condition more important than dispersion for frequency?
- Provides clues but not confirmation without measurements of m



With above normalizations, resonance condition implies $\bar{n} \approx \bar{\omega} - 1$. Experimental fit is $\bar{n} = 0.8\bar{\omega} - 1.2$

⁵S. Tang et al. EU/US Transport Task Force, Williamsburg, VA (2017)

Other Nonperturbative Solutions

- Many examples of low frequency nonperturbative modes exist
 Fishbone, E-GAM, RSAE cascades, RTAE, EPMs, etc
- Numerical results may indicate first high frequency solution
 - Key difference: excitation through Doppler-shifted cyclotron resonance vs Landau ($\ell=0$) resonance
- EP-GAE shares characteristics of low frequency cases
 - Frequency tracks characteristic frequencies of EP motion
 - Prone to large frequency variation with robust mode structure

	MHD GAE	EP-GAE
Dispersion	$\omega \leq \left[k_{\parallel}(r)v_{A}(r)\right]_{\min}$	$\omega = k_{\parallel}(r)v_{A}(r) \pm 20\%$
Resonance	$\omega - \left< \mathbf{\textit{k}}_{\parallel} \mathbf{\textit{v}}_{\parallel} \right> = \ell \left< \omega_{\textit{ci}} \right>$	$\omega - \left\langle \emph{\textbf{k}}_{\parallel}\emph{\textbf{v}}_{\parallel} ight angle = \ell \left\langle \omega_{\emph{ci}} ight angle$
Structure	Large $\Delta\omega \iff \Delta m \neq 0$	Robust to large $\Delta\omega$
Polarization	$\delta extbf{B}_{\perp} \gg \delta extbf{B}_{\parallel}$	$\delta extstyle B_{\perp} \gg \delta extstyle B_{\parallel}$

Summary

- Self-consistent hybrid simulations reveal strong EP modifications to GAEs in NSTX conditions
 - In contrast, CAEs in simulations are not strongly modified
- Frequency changes significantly and continuously with v_0/v_A
 - Change in frequency is consistent with the resonance condition
 - Mostly due to changes in EP phase space, not EP-induced changes to equilibrium
- Mode structure does not change substantially with frequency
 - MHD eigenmodes would have different poloidal mode numbers (m, s) associated with large frequency changes
- Results may indicate a new, high frequency EPM
 - Energetic-particle-modified global Alfvén eigenmode (EP-GAE)

Open Questions and Future Work

- Derive EP-GAE dispersion nonperturbatively
 - Requires calculation of fast ion corrections to Alfvén continuum
- Demonstrate transition from perturbative GAE to EP-GAE
- Experimental identification in NSTX-U
 - Are the high frequency shear Alfvén modes routinely excited in NSTX actually EP-GAEs or GAEs?
- Explore impact on T_e flattening theories
 - How sensitive are existing theories of anomalous electron heat transport^{6,7} to properties of EP-GAE vs GAE modes?

Paper submitted to Phys. Plasmas Contact jlestz@pppl.gov for preprint

⁷N. Gorelenkov *et al.* Nucl. Fusion **50**, 084102 (2010)

⁶Y. Kolesnichenko *et al.* Phys. Rev. Lett. **104**, 075001 (2010)