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Alfvén waves can exhibit a range of bifurcations upon their
interaction with fast ions
Typical scenarios:
* fixed frequency and frequency splitting-> frequency is mostly determined by the equilibrium
* chirping and avalanches -> frequency is highly affected by the fast ions nonlinear response
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Prediction of character of energetic-particle-driven
transport in tokamaks

What tools can be used to model each type of transport?

Diffusive transport (typical for fixed-frequency modes)

* can be modelled using reduced theories, such as quasilinear

* typical in conventional tokamaks

Convective transport (typical for chirping frequency modes) =

* needs to retain full nonlinear features of the wave, is
sustained by nonlinear phase-space structures

* typical in spherical tokamaks

In this talk:

* development of a criterion for the likelihood of each nonlinear scenario and its
comparison with NSTX and DIII-D

* Predictions for TAE in ITER elmy and hybrid scenarios

Both can lead to
similar fast ion
loss levels, up to
40% in present-
day experiments
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The study of the conditions that lead to fully nonlinear scenarios helps

to understand the applicability of reduced models

Need for predictive/efficient
interpretive capabilities motivates
the development of phase-space
resolved, self-consistent quasilinear
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[Detailéd description of the RBQ
code in N. Gorelenkov’s poster]

[Resonance broadening parametric
dependencies in G. Meng’s poster] 4

DIII-D discharge 153072

10

‘-\}— =




Outline

Introduction on Alfvénic spectral characteristics induced by energetic particles
The cubic equation (Berk-Breizman model) and a criterion for onset of chirping
Micro-turbulence as a mediator for chirping onset in DIlI-D and NSTX

Predictions for ITER



Weak nonlinear dynamics of driven kinetic systems can be used to develop a
criterion to distinguish between fixed-frequency and chirping responses
Starting point: kinetic equation plus wave power balance

Assumptions:
e  Perturbative procedure for wp < 7 (wp X \/mode amplitude)

* Truncation at third order due to closeness to marginal stability

*  Bump-on-tail modal problem, uniform mode structure

Cubic equation: lowest-order nonlinear correction to the evolution of mode amplitude A:

S:A—/ drr? A(t—r (1/1( {27/ _T”@T WAt —T—1) A (t =27 — 1))
dt Jo

stabilizing destablllzmg (makes integral sign flip)

* If nonlinearity is weak: linear stability, solution saturates at a low level and f merely flattens
(system not allowed to further evolve nonlinearly).

* If solution of cubic equation explodes: system enters a strong nonlinear phase with large
mode amplitude and can be driven unstable (precursor of chirping modes).

Berk, Breizman and Pekker, PRL 1996 Lilley, Breizman and Sharapov, PRL 2009



A criterion for the likelihood of chirping onset in tokamaks

Using an action and angle formulation, the previous weak nonlinear
theory leads to

>0: fixed-frequency solution likely
<0: chirping likely to occur
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The criterion (Crt = 0) predicts that micro-turbulence should be key in determining

the likely nonlinear character of a mode, e.g., fixed-frequency or chirping
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f (kHz)

Correlation between chirping onset and a marked reduction of

the turbulent activity
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The thermal ion
heat conductivity
is used as a proxy
for the fast ion
anomalous
transport

This observation
motivated DIII-D
experiments to be
designed to
further test the
hypothesis of low
turbulence
associated with
chirping
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DIlI-D: chirping criterion evaluation in negative vs positive triangularity
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Correlation between chirping onset and a marked reduction
of the turbulent activity in NSTX, as computed by TRANSP

NSTX #128453
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GTS* global gyrokinetics analyses show turbulence reduction for rare
NSTX TAE transitions from fixed-frequency to chirping
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Examples of the chirping criterion evaluation:
spherical vs conventional tokamaks

chirping, NSTX fixed-frequencies, DIlI-D and TFTR
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Chirping is ubiquitous in NSTX but rare in DIII-D, which is consistent with the inferred fast ion micro-turbulent levels |,
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Predictions for n=7-11 TAEs! in ITER are near threshold
between steady and chirping

ITER - elmy and hybrid scenarios
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Summary

Criterion gives confidence in the application of quasilinear modeling;
The gyrokinetic code GTS confirms transition from/to chirping is likely
mediated by a change of turbulence;

Experiments with negative triangularity on DIII-D give credence to the
proposed chirping criterion predictions;

Predicted response for ITER (similarly to DIII-D predictions) appears to be
around the borderline between fixed-frequency and chirping.
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