

Global modeling of wall material migration following boronization in NSTX-U

Jacob H. Nichols, PPPL

M.A. Jaworski¹, C.H. Skinner¹, F. Bedoya², F. Scotti³, V.A. Soukhanovskii³, K. Schmid⁴

¹PPPL, ²UIUC, ³LLNL, ⁴IPP-Garching

59th APS-DPP Milwaukee, WI, USA Oct. 23-27, 2017

MOTIVATION

Plasma-wall interactions: a challenge for fusion that demands an integrated modeling approach

- Plasma-wall system is highly coupled, but operates on a wide range of length (10⁻¹⁰-10² m) and time (10⁻⁹-10⁴ s) scales
- Integrated simulations must make use of one of two approaches:
 - 1. Exascale computing
 - 2. Reduced models ← This work
 - Caveat: Most reduced models have a large number of free parameters, which makes reaching ironclad conclusions difficult
- WallDYN is a global integrated mixed-material reduced model that has shown great promise in high-Z devices (JET-ILW, AUG, ITER)

[K. Schmid JNM 2011], [K. Schmid NF 2015], [K. Schmid JNM 2015], [G. Meisl NF 2016]

- Improvements have now been added to WallDYN that allow it to better capture the evolution of thin films used in wall conditioning
 - Wall conditioning and impurity control (especially oxygen) are persistent challenges for every device
 - Lower impurity influx means better plasma performance
 - Validated models can help optimize this process

BORONIZATION IN NSTX-U

Boronization was used in NSTX-U to control impurity influx from the PFCs

- NSTX-U conditioned with deuterated trimethylboron (dTMB) injected into dual-anode He GDC; leads to thin film formation on walls
 - $-B(CD_3)_3$: 17% boron by mass
 - MAPP XPS measurement post-boronizations: 60%C / 35%B / 5%O
 - "Full" boronization: 9.0g dTMB, ~weekly
 - "Mini" boronization: 1.8g dTMB, ~nightly
- Deposition highly peaked near GDC electrodes, but is more uniform when using multiple electrodes

Filterscope data from FY2016 campaign show increasing impurity influx between boronizations

- Divertor filterscopes observed sharp decrease in OII/D-γ signal after boronization, with return to pre-boronized O levels after plasma exposure
 - Faster deconditioning following mini boronization than following full boronization

MAPP XPS data from FY2016 campaign corroborates filterscope trends

- MAPP XPS observed similar trends in total surface oxygen concentration on in situ lower divertor material probe
 - Note: XPS information depth ≈ Ion penetration depth ≈ WallDYN reaction zone width ≈ 4 nm

Boronization model developed that reproduces observed thin film deposition

Full Boronization	B Mid	Е Тор	F Bot
Exp. QMB	1093 A	66 A	67 A
Model	1096 A	71 A	69 A
Mini Boronization	B Mid	Е Тор	F Bot
Exp. QMB	364 A	30 A	7 A
Model	365 A	40 A	40 A

- Constrained by spatial distribution probability, film thickness scaled to match QMB data
 - Note: Only accounts for ~30% boron injected as dTMB
- Film composition: 60%C / 35%B / 5%O (from MAPP)
- Toroidally averaged for use in WallDYN

WALLDYN MODEL

WallDYN: An integrated global model for mixed material migration

WallDYN parameterizes plasma impurity transport with DIVIMP 2D Monte Carlo code

- 20k neutrals launched from each wall bin
 - Energy and angular distribution typical of sputtered particles
 - Deposition location, charge state recorded
- R ≡ Fraction of eroded flux from "source" that ends up in a certain charge state at "destination"
- 1 Algebraic equation for influx of each element & charge state:

$$\Gamma_{wall,elem}^{IN}(t) = \sum_{source} R_{source}^{wall} * \Gamma_{source,elem}^{OUT}(t)$$

- Assumptions:
 - Impurity concentrations are low enough not to disturb plasma ("trace impurity limit")
 - Plasma transport timescale << wall evolution timescale
 - Plasma does not change in time

Previous WallDYN surface model

- Homogenous reaction layer + homogenous bulk
 - All erosion & deposition occurs homogenously in reaction layer
 - Composition of reaction layer is variable, composition of bulk is fixed
 - Reaction layer width held fixed via exchange with bulk (Γ^{EXCH})
 - Assume that trapped hydrogen does not affect sputtering rates
 - Physical sputtering and D-C chemical erosion included
- 1 Differential equation for areal density of each element in reaction layer:

$$\frac{d}{dt}(\sigma_{wall,elem}^{REACTION}) = \Gamma_{wall,elem}^{IN}(t) - \Gamma_{wall,elem}^{REFL}(t) - \sum_{proj} \Gamma_{wall,elem}^{SPUT,proj}(t) - \Gamma_{wall,elem}^{EVAP}(t) \pm \Gamma_{wall,elem}^{EXCH}(t)$$

Incident fluxes:

- Constant D+, D-CX fluxes
- redeposited impurity fluxes

Outgoing fluxes:

- Eroded impurity fluxes
- Energy-resolved Reflected impurity fluxes
 - Evaporated fluxes

Well suited for surfaces > 1 µm

New WallDYN "thin film" surface model

- The use of thin films for conditioning introduces an important new length scale in the system
 - Thin film width = Reaction layer width + Reservoir layer width
 - Composition of reservoir layer is variable
 - Reservoir width is dynamic
 - Net deposition → Reservoir grows
 - Net erosion → Reservoir shrinks
 - Reaction layer width held fixed via exchange with reservoir (Γ^{EXCH}), then bulk once reservoir is depleted
- 2 Differential equations for areal density of each element (1 for reaction layer, 1 for reservoir layer):

$$\frac{d}{dt}(\sigma_{wall,elem}^{REACTION}) = \Gamma_{wall,elem}^{IN}(t) - \Gamma_{wall,elem}^{REFL}(t) - \sum_{proj} \Gamma_{wall,elem}^{SPUT,proj}(t) - \Gamma_{wall,elem}^{EVAP}(t) \pm \Gamma_{wall,elem}^{EXCH}(t)$$

Incident fluxes:

- Constant D+, D-CX fluxes
- Energy-resolved redeposited impurity fluxes

Outgoing fluxes:

- **Eroded impurity** fluxes
- Reflected impurity fluxes
- Evaporated fluxes

WallDYN parameterizes mixed material sputtering and reflection with SDTRIM.SP

SDTRIM.SP varied over projectile/energy/surface composition (1600+ runs)

Fit parameters: Q, E_{th}, a_C, a_{Li}, a_O

 σ_i = areal density of element i Fit parameters: ρ_{refl} , α , b_C , b_{Li} , b_O

PLASMA MODEL

Campaign-relevant plasma parameters chosen for plasma model

- NSTX-U shots were highly varied, transient, and not always controlled
 - Still, "peak" performance, expected to be primary driver of erosion, can be decently represented by a medium-performance NSTX H-mode proxy

Extended grid SOL plasma solution generated with two-fluid onion skin solver

- OSM/EIRENE applied to boundary conditions of validated SOLPS reconstruction of boronized NSTX H-Mode [Canik PoP 2011]
 - No NSTX-U probe data available for direct reconstruction of discharges

OSM/EIRENE edge plasma background generated for NSTX-U

- High strike point density/temperature, large radial gradients (H-Mode like)
- No external flow/pinch applied

RESULTS

Results: agreement with OII emission trends greatly improved with thin film model

Results: agreement with BII, CII emission trends slightly improved with thin film model

- Thin film model brings WallDYN into good agreement with experimental oxygen emission trends following full boronizations
- No experimental trend in carbon emission following boronization
 - Good agreement with both WallDYN models
- No experimental trend in boron emission following boronization
 - Poor agreement with both WallDYN models
 - Reason for continued disagreement is under investigation

Results: agreement with mini boronization emission trends similar with either model

- Thin film WallDYN model capable of differentiating between full and mini boronizations
 - Captures faster rise in impurity influx following mini boronization
- Both model and experiment show degradation of mini boronization coating on time scale of ~ 1 run day (15 sec plasma exposure)
- For mini boronization, thin film WallDYN model is nearly identical to old WallDYN model
 - Makes sense, because boron film applied to divertor (~30 A) is thinner than reaction layer (ion penetration depth $\approx 40 \text{ A}$)

Results: surface concentration evolution during simulations

- Both WallDYN models underestimate the rise in oxygen surface composition observed in MAPP
- Surface boron agreement inconclusive
- Models do not take into account chemical state of surface
 - e.g. B-O vs. B-B vs. B-C bonds
 - May be important!

For more B/C/O surface discussion see:

F. Bedoya JO4.10 Tue PM

H. Schamis PP11.57 Wed PM

Closer look: No evolution observed after exposure to L-Mode fiducial only

- Mini Boronization #12: 11 consecutive L-Mode fiducial discharges
 - Limited Langmuir probe data available for late-campaign L-Mode fiducial
 - Direct comparison is possible
- No oxygen impurity emission evolution is observed over the course of the run day
 - MAPP also shows similar surface oxygen concentration before + after
- Model reproduces general trend after 2nd discharge
 - OII/D-y magnitude low
- Highly likely that WallDYN L-Mode fiducial model does not fully capture evolution driven by higherpower general purpose L-Modes
 - Not enough H-Modes in campaign to explain general OII evolution otherwise

PREDICTIONS

Effect of more uniform boron coverage on oxygen evolution (aka more GDC electrodes)

 Uniformity of boron coatings is controlled by properties of He glow discharge and the number of anodes

Effect of lower bulk oxygen concentration on oxygen evolution (aka better bakeout)

Bulk oxygen content is typically controlled by pre-campaign conditioning (bakeout, etc.)

CONCLUSIONS

- The integrated material migration model WallDYN has been improved through comparison to NSTX-U experimental data
 - WallDYN surface model modified to incorporate finite thin films, as used in wall conditioning
 - Model reproduces impurity emission trends observed following boronization in NSTX-U
 - ✓ Boronization suppresses OII emission
 - ✓ OII emission increases with plasma exposure
 - ✓ OII emission increases faster following a mini boronization
 - Model qualitatively reproduces surface composition evolution observed with MAPP
 - New multi-layer surface model improves agreement with measurables
- Future work: Full-scale model validation
 - Requires repeatable research-grade plasma scenario
 - Requires absolutely-calibrated spectroscopic diagnostics
 - Requires well-constrained SOL plasma reconstruction
 - Independent plasma flow diagnostic highly desirable
 - Requires independent validation of mixed-material sputtering model

Notable area for model improvement: High-fidelity low-energy sputtering yields

D energy (eV)

WallDYN/TRIM vs. Molecular Dynamics

D -> 60%C, 20%B, 20%O at normal incidence

MD: [J. Dominguez-Gutierrez JAP 2017]

- Y_C well fit when including fluxdependent chem. erosion model
- Y_O much higher than model
- Y_B much lower than model