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Motivation

Why are we excited about exciting fluctuations in the pedestal?

◮ EDA H-Mode and Quasi-Coherent mode [6]

◮ Quiescent H-Mode and Edge Harmonic Oscillation [1]

◮ I-Mode and Weakly-Coherent mode [10]

Pedestal-localized modes: “knob” to control particle confinement
independently of energy confinement?



QCM Spectrogram

Figure: Example of quasi-coherent signature as seen in spectrogram of
magnetics fluctuation diagnostic signal. Downward frequency spin likely
due to the Doppler shift from change in plasma rotation velocity [8].



WCM Spectrogram

Figure: The I-Mode operating regime’s “Weakly-Coherent Mode” or
“Heavy Impurity Mode”, visible in a magnetics fluctuation spectrogram
as a fairly broad band of activity around 200 kHz.



Goals
Short-term:

◮ proof-of-concept: determine conclusively whether external
excitation methods are capable of coupling to the QCM.

Long-Term:

◮ determine whether high performance EDA H-Mode operation
can be made more accessible, appear in previously-unseen
parameter ranges;

◮ attempt to either reinforce or stabilize the spontaneous QC
mode in normal EDA H-Mode via feedback;

◮ explore the physics of the QC mode spectrum;
◮ determine whether other modes besides the

spontaneously-arising QCM may still accomplish same particle
transport;

◮ optimize particle transport/antenna power efficiency;
◮ attempt to excite other edge or near-edge modes, including

the Weakly Coherent (Heavy Ion) mode associated with the
I-Mode regime, EHO of QH regime, etc.



Methods

Methods we have employed in allied field, Active MHD
Spectroscopy (see early work at JET, e.g. [2, 4, 5], etc.)

◮ Direct excitation: build external antenna excited directly at
mode frequency

◮ Parametric excitation: use three-wave process or other
nonlinear effect to couple power from (most likely)
higher-frequency drives (e.g. beating ICRF antennas,
amplitude-modulated ICRF, etc.) into lower-frequency mode



Methods

Requirements:

◮ Resonance cond.: match Doppler-shifted mode frequency, k

◮ Variable frequency desirable: allows robust techniques for
resonance ID, overcomes uncertainty in mode frequency,
allows to map spectra

◮ “Two-color”: desirable to drive weakly at off-resonance level
for noise rejection

◮ Perturbation from drive accesses location where mode is
localized (simpler for edge modes than core modes)

◮ (Rule of thumb) Match magnetic perturbation observed in
mode



Direct Excitation

Figure: Photograph of Active MHD antennas currently installed in
Alcator C-Mod. Antennas are 15 cm × 25 cm, and are symmetric above
and below the midplane.



Spectrogram of Active MHD Run

Figure: Spectrogram of fast magnetics fluctuations for Shot 1100122011,
for which Active MHD antenna was energized. Resonance detected from
1.68-1.78 s.



Indication of Resonance During AMHD

Figure: Shot 1100122011, plot of transfer function in complex plane from
several probes, 1.68 s-1.78 s, f = 453 − 504 kHz (rampdown).
Resonance centered at 466 kHz.



Direct Excitation: “Shoestring” Antenna

Figure: Isometric view of antenna design (late Aug.). Mo ML wire (Mo
doped with La) is strung back and forth across antenna. Source: Rick
Leccacorvi, PSFC engineer.



Parametric Excitation

Figure: Simple schematic of our amplitude modulation system. Employed
during Run 1100122 and half of Run 1100226 under MP590 and MP432.



Parametric Excitation

Figure: Spectrogram of fast magnetics signal from Shot 1100122030, for
which ICRF amplitude modulation was run. Resonances may have
occurred around 0.838-1.025 s and 1.15-1.33 s.



Quick Comparison of Methods
Direct Excitation:

◮ Good control of frequency, k-matching for QC mode
◮ Antenna must be very close to mode due to rapid decay of

field away from antenna (since large kθ); estimates show
acceptable for pedestal modes

◮ (Perturbation of BC’s may allow coupling to core modes)
◮ We have amplifiers in the range of 1-1.5 kW; expected to be

sufficient - more power is more expensive.
◮ Another drive option: capacitor banks, LC circuit at res. freq.

since antennas are inductive; lose capability for variable
frequency

◮ Impedance matching to the amplifier has proven challenging
in AMHD experiments, though we expect improvement in
next round of experiments.

◮ Perhaps analysis of direct antenna-plasma interaction is
simpler than that of parametric excitation

◮ Antenna may be installed and ready for operation for spring
2011 campaign



Quick Comparison of Methods

Parametric Excitation:

◮ Equipment is largely in place already and relatively
inexpensive; requires one day setup with appropriate advanced
notice

◮ Start with high power, but limited by Manley Rowe relations,
|P1/ω1| = |P2/ω2| = |P3/ω3| (ω3 = ω1 − ω2, ω1 ≈ ω2 ≫ ω3).

◮ Expect better access to core than external inductive antenna,
but remains to be seen how edge access compares.

◮ Can good k-matching be achieved? We believe operating at
low absorption may help; our ICRF antennas have variable
frequency, 40-80 MHz.



Summary and Future Work

◮ Actively exciting pedestal fluctuations is “exciting” topic

◮ One goal: find a new way to control particle transport across
pedestal

◮ We have gained experience in coupling to MHD modes from
Active MHD spectroscopy

◮ Currently developing direct and parametric drive methods for
exciting QC mode; if successful, will attempt other modes
subsequently, including WCM (may or may not be a pedestal
mode; ref. Prof. Bruno Coppi)

◮ QCM antenna may be ready for spring 2011 campaign,
parametric method can be ready sooner.
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Backup Slide: Finding Resonances: ICRF Amplitude

Modulation

Figure: Shot 1100122030, Nyquist plot of transfer function from 0.838 to
1.025 s ( 650 kHz to 464 kHz).



Backup Slide: Transfer Function Magnitude



Backup Slide: Schematics of QC Antenna

Figure: Different schemes for wiring antenna conductors. (a) “Pure
parallel” - all wires are in parallel, and there are three common buses at
voltages, {−V , 0, V }. (b) “Hybrid” - single-turn loops of wire are placed
in parallel. (c) “Pure series” - all segments of wire are connected in
series. Only one forward (blue) and backward (black) pass is shown,
though multiple passes may be made. N = 8 turns are shown.



Backup Slide: Schematic of Active MHD System

Figure: AMHD Block diagram, designed and built by Willy Burke.


