A Liquid Metal PMI/PFC Initiative

R. Maingi, on behalf of a Liquid Metal PFC Working Group

Deployment in conf. device

Flowing liquid-metal divertor concept

FESAC Strategic Priorities Panel Gaithersburg, MD 8-10 July 2014

Initiative - development of liquid metal PFCs for FNSF and beyond: *transformative area, ripe for US leadership*

- Update on gaps since Greenwald and ReNeW: Power exhaust more challenging than previously thought
 - Both steady and transient loads
- Goal of initiative is to conduct research so that liquid metals can be considered as PFC candidates for FNSF and beyond
 - Advantages and Knowledge Gaps
 - Emphasis is on Li, but Sn and eutectics to be evaluated
- Elements of liquid metal initiative
 - Thrust: Science and technology of liquid PFCs (*Jaworski talk*)
 - Thrust: Fundamental liquid metal surface science (Allain talk)
 - Thrust: Deployment in confinement devices (this talk)

2

The leading solid PFC material, tungsten, has a number of challenges; focal area of worldwide PMI program

- Accepted heat flux exhaust limit for W is 5-15 MW/m², depending on magnitude/frequency of transients allowed
 - More realistic power exhaust limit for reactors < 5 MW/m², because W thermal properties degrade under neutron fluence
- W ductile-to-brittle transition (DBTT) temperature too high
 - DBTT goes up with neutron fluence; W will be brittle in some areas
- W develops nano-structures ("fuzz", bubbles, dust) with He bombardment and elevated temperatures
 - Erosion, PFC integrity and performance, tritium retention issues
- Core integration: difficult to maintain high τ_E , T_{ped} (e.g. JET)
- > W would be more attractive if covered by liquid metal
 - Leading substrate candidate

3

Pedestal performance and core confinement in JET scenarios was reduced with installation of ITER-like wall

 Substantial value in development of scenarios with actual candidate PFC materials

Beurskens PPCF 2013

Scenarios in tokamak discharges with High-Z PFCs can affect pedestal performance and core confinement

Update on gaps since ReNeW: Steady heat flux exhaust is more challenging than projected at ReNeW

- Heat flux profile measured in divertor; footprint 'width' λ_q projected to outer midplane with flux expansion
- International effort found that λ_{q} varies inversely with $B_{pol,MP}$
 - Low gas puff attached plasmas;
 some broadening and heat flux dissipation with detachment
- Projected width in ITER ~ 1/5 previous value; operating window narrows Kukushkin, JNM 2013
- Much more challenging for reactors

Eich, NF 2013

Impact of low λ_q^{mid} studied for ITER

Cross-field transport can be reduced to get lower λ_{α}^{mid} , but higher divertor neutral pressure P_n reduces q_{peak}

 $P_{SOI} = 100 \text{ MW}$

Maingi: FESAC Strategic Priorities 2014 – LM initiative

Operating window gets reduced with lower λ_q^{mid}

Window in (P_{α} , Q) space for $q_{pk} \leq 10 \text{ MW/m}^2$

$$\lambda_q = 3.6 \text{ mm}$$
 $\lambda_q = 1.6 \text{ mm}$ $\lambda_q = 1.2 \text{ mm}$

Window limited by $P_{SOL} > P_{LH}$, $\mu < 0.8$, Q > 5 and $q_{pk} \le 10 \text{ MW/m}^2$ Still exists at $\lambda_q = 1.2 \text{ mm}$ but almost a point, Q ≤ 7 , $P_{\alpha} \le 60 \text{ MW}$ Detachment limit gets more demanding at low λ_a

A.S. Kukushkin et al., PSI-20, Aachen, May 2012. ITER_D_7M93AL

Cale china eu india japan korea russia usa

25

9

Operating window can be partly restored by increasing q_{peak}^{max} to 12-15 MW/m²

Technology improvements or complete elimination of ELM transients could increase q_{peak}^{max} by 50%

Kukushkin, PSI 2012

Reactors heat exhaust more challenging when considering exhaust power normalized by device size (R, R², or R³)

Device nar Divertor: S	ne F SD/XD	Heating power P (MW)	Major r <i>R</i> (n	adius <i>I</i> n) II	P_{heat}/R TER=1	P_{heat}/R^2 ITER=1	P_{heat}/R^3 ITER=1	
C-Mod		3	0.6	5	0.26	2.7	_	
DIII-D		10	1.6	i i	0.31	0.68	_	
JET		17	3		0.31	0.60	—	
JT-60U		17	3.4		0.26	0.55	—	
ITER		120	6.2		1	1	1	
EU-A		1246	9.6		6.8	4.3	2.8	
EU-B		990	8.6		6.1	4.3	3.2	
EU-C		792	7.5		5.6	4.5	3.8	
EU-D		571 387			4.9	4.9	5.0	
ARIES-AT	,				3.9	4.6	5.6	
ARIES-RS		515	5.5		4.9	5.4	6.2	
Slim-CS		645	5.5		6.2	6.8	7.8	
CREST		691	5.4		6.7	7.6	8.8	
	Device name reactor/BPX divertor: SD/2	f _{rad-c} same XD IT	to give P_{SOL}/R as ER (SD)	$f_{\text{rad-core}}$ to same P_{SOL} ITER (5	give $(R^3 \text{ as SD})$	$f_{rad-core}$ with P_{SOL}/R metric if XD is used	_	
	ITER		16%	16%	,			
	EU-A		88%	70%)	69%		
	EU-B		86%	73%	,	65%		
	EU-C		85%	78%	,	62%		
	EU-D		83%	83%	,	57%		
	ARIES-AT		78%	85%	,	46%		
	ARIES-RS		83%	86%	,	57%		Kotschenreuthe
	Slim-CS		86%	89%	,	66%		PoP 2007
	CREST		87%	90%	,	68%		

Maingi: FESAC Strategic Priorities 2014 – LM initiative

Update on gaps since ReNeW: ELM mitigation requirements are more challenging than projected at ReNeW

- For ITER: need 45x ELM heat flux mitigation; previously ~ 20x
 - Set energy flux limit: $\Delta W_{ELM} < 0.7 \text{ MJ} (0.2\% \text{ W}_p)$
 - Project ELM frequency for ITER vs. $I_{\rm p}$
 - Inter-ELM heat flux width $\lambda_q \sim 1/I_p$
 - Assess ELM damage limit for Be and needed freq. to keep core clean of W
 - Assess minimum ELM multiplier needed
 - Using $\Delta W_{ELM} f_{ELM} = \alpha P_{SOL}$

ELM frequency increased in both JET and DIII-D; peak heat flux q_{peak} unchanged in JET but reduced in DIII-D

• Is the difference related to metallic vs. carbon wall?

Advantages and Knowledge Gaps for LM PFCs

- Advantages
 - Very high steady, and transient heat exhaust, in principle (50 MW/m² from electron beam exhausted; also 60 MJ/m² in 1 μsec)
 - Erosion tolerable from PFC view: self healing surface
 - No dust; main chamber material transported to divertor could be removed via flow
 - LM is neutron tolerant; protects substrate from PMI
 - Liquid lithium offer access to low recycling, high confinement regimes under proper conditions
- Knowledge Gaps
 - Reliably producing stable LM surfaces and flows
 - Understanding and controlling the LM chemistry
 - Acceptable temperature windows for specific integrated scenarios
- Goal: conduct research needed for LM PFC to be considered as a viable PFC candidate for FNSF

ROSATOM

Federal State Unitary Enterprise "Red Star" Simulation of disruption and ELM effect was provided by plasma gun experiments

QSPA

Hydrogen plasma gun: 1 – diagnostic window; 2– magnetic field coils; 4 – hydrogen plasma flux; 5 – spectroscope / laser scattering ; 8 – Li target

Plasma focus

Lithium CPS targets

Experimental conditions

MK- 200UG

Initial temperature of target- 20-350°C

Q, MJ/m ²	4-5	15	60
t, s	5·10 ⁻⁴	4·10 ⁻⁵	~10 ⁻⁶
n _e , cm ⁻³	(2-5)·10 ¹⁶	(2-6)·10 ¹⁵	10 ¹⁸
pulses	22	17	40

IAEA Technical Meeting on Assessment of Atomic and Molecular Data Priorities Vienna, Austria, 04 - 05 December 2006

Stationary heat flux effect Investigations was started with stationary heat flux load simulation by electron-beam experiment in SPRUT-4

Electron energy - 8 keV Target area - 15 cm² Heat flux - 1-50 MW/m² CPS – Mo mesh with R_{eff} =75 µm Init. temperature – 250°C

vertical horizontal combined
 <u>Targets withstood</u> long (5-10 minutes, time was limited by Li amount in the targets) heat loads up to 25 MW/m² and short (up to 15 s) excursions up to 50 MW/m² without cooling.
 <u>Successful steady state operation</u> (up to 3 hours at power flux from 1 to 11 MW/m²) of target with heat removal and Li supply systems has been demonstrated. An ability of CPS to save functional properties after partial damage has been confirmed by the experiments with CPS refilling after target drying.

IAEA Technical Meeting on Assessment of Atomic and Molecular Data Priorities Vienna, Austria, 04 - 05 December 2006

LM initiative has several thrusts to address knowledge gaps

- LM PFC technology and science in flowing, self-cooled and externally cooled test systems (*Jaworski talk*)
 - Flow rates from 1 mm/sec 10 m/sec
 - Use capillary or j x B forces to overcome MHD forces that could cause mass ejection
 - Determine operating temperature windows
 - Hydrogenic species control and He entrainment
- Fundamental LM surface science studies (Allain talk)
 - Keep LM surface clean for reliable flow; understand PMI
 - Predict flow of LM, including wetting and de-wetting
- Compatibility with attractive core/edge plasma (rest of talk)
 - Plasma power and momentum exhaust; particle control
 - Applicability of low recycling regimes with excellent confinement: target H98
 2, enabled by LM resilience to transients and high peak heat flux exhaust: <u>attractive for ST-FNSF</u>

Several 'new' ideas since ALPS/APEX studies

- Slow flowing (1 cm/sec) thin film (0.1 mm) liquid lithium across SS plate, driven by j x B
 - Tested successfully in HT-7 in 2012
 - First test in EAST as outboard limiter in 2014
- Continuous flow driven by thermoelectric effect: LIMITS (Liquid Metal Infused TrencheS)
 - Tested successfully in HT-7 in 2012
 - First test in EAST in 2014
- Surface tension balancing MHD forces: capillary porous systems
 - FTU, several Russian tokamaks, NSTX
 - Low recycling, low surface temperature scenario, and high recycling vapor-shielded scenario

Lithium (solid and liquid) PFCs can enhance confinement

- Preliminary results: 4-5× improvement over ITER98P(y,2)
 - Majeski talk

Maingi, PRL 2011; Boyle, JNM 2013

$H_{98y,2}$ range of 1.5-2 favorable for high neutron wall loading ≥ 1.5MW/m² (peak outboard), f_{BS} < 80% for external control

ST-FNSF

- A = 1.75
- R₀ = 1.7m
- B_T = 2.9T
- κ, δ = 2.8, 0.55
- f_{Greenwald} = 0.8
- f_{NICD} = 100%
- E_{NNBI} = 0.5MeV
- $P_{NNBI} \le 80MW$

Maingi: FESAC Strategic Priorities 2014 – LM initiative

Final step of the LM initiative is deployment of LM PFCs in high power, diverted confinement devices

- Assess ability of LM PFC to enable or couple to attractive core/edge plasma
 - NSTX-U: toward evaluation for FNSF (ST or AT) (*Menard talk*)
 - EAST: evaluation in long pulse advanced tokamak; very slow flowing, small midplane liquid lithium limiter being tested in 2014
 - Resources from this thrust used to deploy flowing LM system in NSTX-U, and to support system designs for EAST
 - Complements LTX (separate funding): ultra low recycling with liquid Li
 - Complements European work: FTU, TJ-II, Magnum-PSI work
- Assess compatibility with heat exhaust innovations
 - Innovative divertors (e.g. super-X, snowflake, X, or combinations) may facilitate LM deployment via 'isolated' PWI chamber
- Includes basic theory support needed for projections
 - Edge/SOL/divertor transport with LM boundary

Liquid lithium limiter delivered to EAST for deployment in 2014

- Liquid Li thin film viscous flow system tested on HT-7 and sent to EAST
- Idea is to confirm that liquid Li flow can be maintained for long periods
- To be inserted in EAST outer midplance (see Li, Guo talk)

Copper coupon and collector

Figure 1: Schematic of heated copper plate and small liquid lithium reservoir, to be mounted on an insertable probe for testing in EAST during the 2014 campaign

L.E. Zakharov

Computational Modeling for PSI and Edge Plasma

(UEDGE-DEGAS, B2/ EMC3-EIRENE, etc) NEAR WALL KINETICS

MATERIAL WALL

(BCAs, MDs, XOLOTL, etc)

Plasma edge codes

- No plasma edge code is currently able to handle plasma kinetic effects
 - B2 & UEDGE use FV to discretize plasma multi-fluid equations
 - EMC3 uses MC to sample *the same* fluid equations
- Only EMC3 allows 3D fluid (B2 &UEDGE are 2D)
- Turbulence is neglected in all cases (parameters are used to reconcile anom.transp.)
- Codes consider quasineutral region only (BCs are at the sheath)

Near Wall Kinetics

- Region extending from the wall, across the sheath, to the QN region inside the plasma
- Kinetic treatment
- Detailed PMI (both electrons and ions)
- Interface between Edge codes and Material Codes
- Necessary link between Edge codes & Material Codes

Development of Near Wall Kinetics models able to interface Edge and Material codes under extreme conditions of PM interaction

- Reconciliation of 2D/3D fluid modeling with plasma kinetic behavior via coupling the kinetic solver with fluid solver
- Develop predictive capability, V&V plays fundamental role
- → Use HIDRA device to benchmark near wall/materials and plasma edge physics codes
- \rightarrow UIUC computational resources

Thrust includes support for theory and modeling needed for extrapolability of core-edge integrated performance

- Response of divertor and pedestal plasma to LM PFCs
 - Low and high recycling liquid Li; high recycling Sn and eutectics
 - Detailed numerical calculations with SOL codes (SOLPS, UEDGE), near-wall kinetics calculations, and material response calculations (BCAs, MD, XOLOTL, ...)
 - Analytic and semi-analytic calculations
- Ideas for reducing the loading on divertors and first walls
 - First principles modeling of SOL heat flux width including e.g. nonambipolar currents
 - Ways to broaden the SOL width, e.g. choice of magnetic geometries or LM PFCs

Summary and Required Resources

- Elements of liquid metal initiative
 - Thrust: Science and technology of LM PFCs (*Jaworski talk*)
 - Thrust: Fundamental LM surface science (Allain talk)
 - Thrust: Deployment in confinement devices (*this talk*)
 - Outside the scope of this initiative, but attractive: deployment in high power density systems (e.g. ADX; high q_{||}, hot-wall, high duty factor) (*LaBombard, Marmar, Goldston talks*)
- Resources ~ 10 M\$/year for all 3 thrusts
 - Test stands and surface science thrusts somewhat front-end loaded, while deployment on confinement devices is back-end loaded
 - Enables deployment of flowing LM PFC in entire divertor on NSTX-U
 - Enables EAST system designs + collaborative research

Dedicated facilities can achieve aggressive timeline for confinement device demonstrations

		2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
	Li target + Li loop linear device										
High-Temp	Vapor shielding physics (linear)										
Lithium	Li recapture										
PFCs	Component power handling										
	Confinement Device Deployment										
Tin PFCs	Sn material compatibility										
	Sn target PSI										
	GaInSn simulator experiments										
Fast-flow PFCs	Fast-flow divertor target										
	Toroidal facility development										
	Fast flow + plasma lp ramp										
Theory &	Vapor shielding modeling										
Modeling	Free-surface MHD modeling										

LM Surface	Wetting & De-wetting; Temp limits					
Science	Fuel and Particle Control					

Active development

Target for completion

Update on gaps since ReNeW: ELM mitigation requirements are more challenging than projected at ReNeW

- Set energy flux limit: $\Delta W_{ELM} < 0.7 \text{ MJ} (0.2\% W_p)$
 - 50% of damage limit, not including fatigue
- Project ELM frequency for ITER vs. I_p
 - Inter-ELM heat flux width $\lambda_q \sim 1/I_p$
- Assess ELM damage limit for Be and needed freq. to keep core clean of W
- Assess minimum ELM multiplier needed
 - Using $\Delta W_{ELM} f_{ELM} = \alpha P_{SOL}$
 - Need 45x reduction at 15 MA

First key step to ELM elimination in NSTX is recycling reduction with lithium

ψ_{N} from 0.95-1 (recycling region)

 ψ_N from 0.8-0.94

<u>NSTX-U 15 yr plan</u>: ST physics / scenarios \rightarrow integrate highperform. core + high-Z + Li \rightarrow flowing / large area liquid metals

NSTX-U FESAC Presentation – July 2014