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US STs aim to accelerate fusion development 

◆  Advance ST as Fusion Nuclear Science Facility 
– NSTX-U: physics + scenario basis for FNSF-ST (also ST DEMO) 
–  Pegasus, NSTX-U: plasma start-up via helicity injection 

◆  Develop solutions for plasma-material interface 
– NSTX-U, LTX-U: liquid Li walls for very high confinement, liquid 

metal PFCs 
– NSTX-U: novel divertors:  snowflake/X, detachment , vapor shielding 

◆  Explore unique ST parameter regimes to advance 
predictive capability - for ITER and beyond 

–  Pegasus, NSTX-U: high β, toroidicity, rotation - for MHD & transport 
– NSTX-U: non-linear Alfvénic modes, electromagnetic turbulence  
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 LTX program elements 

◆  Demonstrate compatibility of a tokamak plasma 
with liquid lithium walls 

 
◆  Investigate changes in tokamak confinement 

and equilibrium with low recycling (lithium) walls 

◆  LTX-U - extend studies to high auxiliary heating 
power and core neutral beam fueling 
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Knowledge gaps in edge, plasma material 
interactions prominent in Greenwald, ReNeW 

◆  Solid (tungsten) walls tightly constrain reactor design 
–  Power loading, erosion, neutron damage constraints 

mandate large reactor scale size (R0 possibly 9 m) 
–  Unclear that a reactor with tungsten PFCs will be 

economically feasible  
◆  Advances in confinement which enable smaller fusion core 

not compatible with limits of tungsten walls, divertor 
◆  Liquid metal walls offer significant improvements in power 

handling, erosion, and neutron tolerance 
–  Divertor, wall solution for AT reactor designs 
–  Lithium offers advanced confinement + advanced wall 

for a more compact fusion reactor 
◆  Integrated solution for an ST-based FNSF, pilot plant, ST-

based power reactor 
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Lithium plasma-facing components improve confinement 
 

◆  Recycling small (~10 – 20%) for clean lithium surface 
◆  Low recycling wall ⟺ hot edge in a magnetically confined 

plasma 
– Core power flux is carried to the wall by particles 
➯ High recycling = lots of edge particles = low energy/
particle 
➯ Low recycling = only core particles in edge = high 
energy/particle 

Ø High edge temperature 
Ø Reduced core temperature gradient, instability drive 
Ø Reduction in anomalous transport 

◆  Enable compact reactor designs with higher confinement 
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 Solid lithium coatings in NSTX improve confinement  

	
What is τE upper bound? D. P. Boyle et al., J. Nucl. Mater. 438, S979 (2013)"

NSTX-U"
"

NSTX-U PAC-33 – Research Program Overview (J. Menard)"

◆  Global confinement improves 
◆  Core lithium accumulation < 0.1% 
◆  ELM frequency declines to zero 
◆  Edge transport declines 
◆  High τE critical for FNSF, next-steps 

 
◆  Best estimate: Recycling reduced 

from ~0.99 ⇒ 0.9 ± 0.05 
 

Plasma confinement increases ~continuously with increasing Li evaporation 
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LTX – full, conformal liquid lithium-coated liner 
⇒up to 80% of plasma surface area surrounded by liquid lithium 

Inner heated high-Z shell (explosively bonded SS on copper) 
 2014: Fast (5 minutes for ~1000 Å) Li coating via electron beam evaporation 

Electron gun 
1-2 kW 
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Ø First operation of any tokamak with large area liquid lithium walls 
Ø 2 m2 of liquid lithium coated wall; 40% of plasma-facing surface 
Ø Ready for experiments with full (4 m2) liquid lithium coverage 

Confinement increases with lithium coverage 
⇒Liquid lithium more effective 

LTX: 2 m2 liquid 
lithium 

Thomson scattering 
system now aligned, 
operational 

LTX: 2 m2 solid lithium 

Open symbols 
CDX-U: 0.1 m2 liquid  
+ 0.1 m2 solid lithium 

ITER98P(y,1) scaling 
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LTX-U, NSTX-U, liquid lithium program 

 
◆  Proposed initiative is to add NBI to LTX (☞LTX-U) 

–  700kW, 20 keV, 100 msec system (no cost) from Tri-Alpha Energy 
◆  Confinement with Paux ~ 10x Pohmic, low recycling wall, higher beta 

Ø Core fueling  
◆  Establish the physics basis for large area, liquid lithium walls in 

NSTX-U 
–  NSTX-U: Increased heating power, pulse length, diagnostic 

capabilities 
◆  Technology program needed to develop circulating liquid lithium walls  

–  Test stands to develop liquid lithium walls, divertor for ST 
–  Companion talks on development of liquid metal PFCs Wednesday 

and Thursday (R. Goldston, R. Maingi, M. Jaworski, J.P. Allain) 

9	




Budget, University/lab participation 

◆  Base program (LTX-U with NBI) requires ~ 2.5 M$/year 
◆  Continued ORNL funding (0.5M$/yr) required for diagnostic support 

–  Spectroscopy and Li-CHERs  
»  Active CHERs with neutral beam  

◆  Toroidal momentum transport studies 
–  Provide core Ti, lithium impurity concentrations 

◆  Additional participation (~0.4-0.5 M$/yr increment): 
–  UCLA: 300 GHz interferometer and profile reflectometer 
–  UIUC: Materials Analysis Probe (existing probe to return to NSTX)  
–  Johns Hopkins: Survey EUV spectrometer 
–  LLNL: High resolution EUV spectrometer (impurity Ti) 
–   Princeton University: Surface science of liquid lithium 
–  More University participation needed 

◆  Research strongly dependent on Princeton University grad students 
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Conclusions 

◆  Large increase in energy confinement demonstrated 
with liquid lithium walls in LTX 
–  Results will be further extended in the near term 

◆  Liquid lithium walls also offer: 
–  Tolerance to high heat loads 
–  Long lifetime 
–  Reduced reactor scale 

◆  LTX program goal is to provide a sound physics basis 
for a next-step in liquid lithium walls ⇒ NSTX-U 

◆  Initiative to install a neutral beam on LTX – LTX-U - 
will enable this goal 
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Backup 



Lithium safety 
◆  CDX/LTX experiments have run 14 years without incident 
◆  Extensive engineering controls for lithium systems 

–  Secondary stand-by vacuum system (Roots blower) maintains 
reduced pressure in LTX, even if a vacuum window cracks 

–  Tertiary turbopump system on 15 min. uninterruptible power 
–  Heaters are interlocked to pressure sensors 
–  ALL windows are mounted on gate valves 

◆  No direct water cooling of the vacuum boundary or internal sturctures 
◆  No argon gas pressurization to transfer liquid lithium 
◆  No use of demountable joints for lithium containment 

–  Difficult/impossible to effectively leak check once in service 
–  Liquid lithium containment employs welded or formed stainless steel 

or tungsten structures 
◆  Vacuum boundary is NOT heated above the melting point of lithium 

–  Lithium will freeze out on the wall. No possibility of egress into air 



Oxygen impurities in discharge are now 
suppressed with liquid lithium PFCs 
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- lots of oxygen 

Fresh, liquid lithium 
- little oxygen 

Fresh, solid lithium 
- moderate oxygen 

Hot shells, 
liquid lithium. 
O/Li ratio drops 
through the day. 

Cold shells, solid 
lithium. O/Li ratio rises. 

Spectra from JHU transmission 
grating instrument 

Lithium/oxygen line ratio – shot history 
from JHU TG EUV spectrometer 

Old, solid lithium 



Recycling via direct reflection from lithium 
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◆  Lithium has the lowest 

probability of direct 
reflection of any 
candidate PFC material 

◆  For an average incident 
angle of 45º, the 
reflection coefficient at 
low energy is ~20% 
(edge Te~30 eV) 

◆  Drops to <10% for edge 
Te ~ 300 eV 
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Lithium sputtering 

◆  Fraction of lithium which is sputtered as an 
ion ~60% for incident ion energy ~0.5 - 1 keV. 
He+ incident at 45°	


	

◆  Self-sputtering of Li on D-treated Li:	


–  24.5% at 700 eV	

–  15.8% at 1 keV	


	


◆  Li sputtering yield for D incident on deuterated 
Li, calculations and IIAX measurements (Allain 
and Ruzic, Nucl. Fusion 42(2002)202). Angle of 
incidence 45° 

◆  At 700 eV the yield is 9% 
◆  Fraction of sputtered lithium = redeposited is 

high 
–  Low ionization energy - ionized in the 

sheath 
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H98y,2 range of 1.5-2 favorable for high neutron wall loading  
≥ 1.5MW/m2 (peak outboard), fBS < 80% for external control 

Power limited for H98y,2 < 1.5 	


ST-FNSF 
◆ A = 1.75 
◆ R0 = 1.7m 
◆ BT = 2.9T 
◆  κ, δ = 2.8, 0.55 
◆ fGreenwald = 0.8 
◆ fNICD = 100% 
◆ ENNBI = 0.5MeV 
◆ PNNBI ≤ 80MW 

Stability limited for H98y,2 > 1.6 	



