LTX : Exploring the advantages of liquid lithium walls

Dick Majeski

with:

T. Abrams, R. Bell, D. Boyle, A. Diallo, E. Granstedt, C. M. Jacobson, R. Kaita, T. Kozub, B. LeBlanc, M. Lucia, R. Maingi, J. Menard, E. Merino, J. Schmitt, D. Stotler, G. Tchilingurian *PPPL*

T. M. Biewer, J. M. Canik, T. K. Gray, *ORNL* – CHERs, spectroscopy

- S. Kubota, W. A. Peebles, *UCLA* Interferometer, reflectometer
- P. Beiersdorfer, J. H. T. Clementson, K. Widman, *LLNL* EUV spectroscopy *LL* Lawrence Livermore
- J. P. Allain, F. Bedoya, *University of Illinois* MAPP, surface science
- K. Tritz, Johns Hopkins University EUV survey spectrometer
- J. Bialek, Columbia University modeling of 3D fields
- C. Hansen, T. Jarboe, University of Washington 3D MHD modeling
- B. Koel, A. Capece, *Princeton University* surface science

COLUMBIA | ENGINEERING The Fu Foundation School of Engineering and Applied Science

US STs aim to accelerate fusion development

- Advance ST as Fusion Nuclear Science Facility
 - NSTX-U: physics + scenario basis for FNSF-ST (also ST DEMO)
 - Pegasus, NSTX-U: plasma start-up via helicity injection
- Develop solutions for plasma-material interface
 - NSTX-U, LTX-U: liquid Li walls for very high confinement, liquid metal PFCs
 - NSTX-U: novel divertors: snowflake/X, detachment , vapor shielding
- Explore unique ST parameter regimes to advance predictive capability - for ITER and beyond
 - Pegasus, NSTX-U: high β , toroidicity, rotation for MHD & transport
 - NSTX-U: non-linear Alfvénic modes, electromagnetic turbulence

- Demonstrate compatibility of a tokamak plasma with liquid lithium walls
- Investigate changes in tokamak confinement and equilibrium with low recycling (lithium) walls
- LTX-U extend studies to high auxiliary heating power and core neutral beam fueling

Knowledge gaps in edge, plasma material interactions prominent in Greenwald, ReNeW

- Solid (tungsten) walls tightly constrain reactor design
 - Power loading, erosion, neutron damage constraints mandate large reactor scale size (R₀ possibly 9 m)
 - Unclear that a reactor with tungsten PFCs will be economically feasible
- Advances in confinement which enable smaller fusion core not compatible with limits of tungsten walls, divertor
- Liquid metal walls offer significant improvements in power handling, erosion, and neutron tolerance
 - Divertor, wall solution for AT reactor designs
 - *Lithium* offers advanced confinement + advanced wall for a more compact fusion reactor
- Integrated solution for an ST-based FNSF, pilot plant, STbased power reactor

Lithium plasma-facing components improve confinement

- Recycling small (~10 20%) for clean lithium surface
- Low recycling wall ⇔ hot edge in a magnetically confined plasma
 - -Core power flux is carried to the wall by particles
 - ⇒ High recycling = lots of edge particles = low energy/ particle
 - Low recycling = only core particles in edge = high energy/particle
 - High edge temperature
 - Reduced core temperature gradient, instability drive
 - ➢Reduction in anomalous transport
- Enable compact reactor designs with higher confinement

Solid lithium coatings in NSTX improve confinement

NSTX-U

Plasma confinement increases ~continuously with increasing Li evaporation

D. P. Boyle et al., J. Nucl. Mater. 438, S979 (2013)

- Global confinement improves
- Core lithium accumulation < 0.1%
- ELM frequency declines to zero
- Edge transport declines
- High τ_{E} critical for FNSF, next-steps

 Best estimate: Recycling reduced from ~0.99 ⇒ 0.9 ± 0.05

LTX – full, conformal liquid lithium-coated liner ⇒up to 80% of plasma surface area surrounded by liquid lithium

N

Inner heated high-Z shell (explosively bonded SS on copper) ➡ 2014: Fast (5 minutes for ~1000 Å) Li coating via electron beam evaporation 7

Confinement increases with lithium coverage ⇒*Liquid* lithium more effective

First operation of any tokamak with large area liquid lithium walls
2 m² of liquid lithium coated wall; 40% of plasma-facing surface
Ready for experiments with full (4 m²) liquid lithium coverage

LTX-U, NSTX-U, liquid lithium program

LTX

- Proposed initiative is to add NBI to LTX (**LTX-U)
 - 700kW, 20 keV, 100 msec system (no cost) from Tri-Alpha Energy
- Confinement with P_{aux} ~ 10x P_{ohmic}, low recycling wall, higher beta
 - Core fueling
- Establish the physics basis for large area, liquid lithium walls in NSTX-U
 - NSTX-U: Increased heating power, pulse length, diagnostic capabilities
- Technology program needed to develop circulating liquid lithium walls
 - Test stands to develop liquid lithium walls, divertor for ST
 - Companion talks on development of liquid metal PFCs Wednesday and Thursday (R. Goldston, R. Maingi, M. Jaworski, J.P. Allain)

Budget, University/lab participation

LTX

- Base program (LTX-U with NBI) requires ~ 2.5 M\$/year
- Continued ORNL funding (0.5M\$/yr) required for diagnostic support
 - Spectroscopy and Li-CHERs
 - » Active CHERs with neutral beam
 - Toroidal momentum transport studies
 - Provide core T_i, lithium impurity concentrations
- Additional participation (~0.4-0.5 M\$/yr increment):
 - UCLA: 300 GHz interferometer and profile reflectometer
 - UIUC: Materials Analysis Probe (existing probe to return to NSTX)
 - Johns Hopkins: Survey EUV spectrometer
 - LLNL: High resolution EUV spectrometer (impurity T_i)
 - Princeton University: Surface science of liquid lithium
 - More University participation needed
- Research strongly dependent on Princeton University grad students

Conclusions

- Large increase in energy confinement demonstrated with liquid lithium walls in LTX
 - Results will be further extended in the near term
- Liquid lithium walls also offer:
 - Tolerance to high heat loads
 - Long lifetime
 - Reduced reactor scale
- LTX program goal is to provide a sound physics basis for a next-step in liquid lithium walls ⇒ NSTX-U
- Initiative to install a neutral beam on LTX LTX-U will enable this goal

Backup

Lithium safety

- CDX/LTX experiments have run 14 years without incident
- Extensive engineering controls for lithium systems
 - Secondary stand-by vacuum system (Roots blower) maintains reduced pressure in LTX, even if a vacuum window cracks
 - Tertiary turbopump system on 15 min. uninterruptible power
 - Heaters are interlocked to pressure sensors
 - ALL windows are mounted on gate valves
- **No** direct water cooling of the vacuum boundary or internal sturctures
- No argon gas pressurization to transfer liquid lithium
- **No** use of demountable joints for lithium containment
 - Difficult/impossible to effectively leak check once in service
 - Liquid lithium containment employs welded or formed stainless steel or tungsten structures
- Vacuum boundary is NOT heated above the melting point of lithium
 - Lithium will freeze out on the wall. No possibility of egress into air

Oxygen impurities in discharge are now suppressed with liquid lithium PFCs

Spectra from JHU transmission grating instrument

Recycling via direct reflection from lithium

22-26 June 2009

Lithium sputtering

15.8% at 1 keV

ITER School 2009 22-26 June 2009

$H_{98y,2}$ range of 1.5-2 favorable for high neutron wall loading ≥ 1.5 MW/m² (peak outboard), $f_{BS} < 80\%$ for external control

Stability limited for $H_{98y,2} > 1.6$