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H-mode confinement scales differently in two 
wall conditioning scenarios used in NSTX 

NSTX has used HeGDC+boronization as well as 
lithium evaporation for wall conditioning  
•  Strong BT, weak Ip scaling with HeGDC+B!
•  H98y,2 scaling trends with Li evaporation!

Kaye (2007), Gerhardt (2011)!

Li remains outside the!
main plasma!
(Podesta EX/P3-02)!

 HeGDC+B!

Li evap!
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Can the difference in dimensional parameter scalings be 
reconciled? 

We find that: 

•  Discharges using lithium evaporation generally have lower collisionality 

•  Collisionality unifies the scalings: Strong increase of normalized 
confinement time with decreasing ν*	



•  Favorable implications for ST-based Fusion Nuclear Science Facility 
(FNSF) 

•  Collisionality decreases primarily due to broadening of the electron 
temperature profile 

•  The reasons for the strong scaling with collisionality will be 
explored in this talk 
–  Global scaling 

–  Profile and transport changes (in both e- and i+) with collisionality 

–  Results from linear gyrokinetic calculations 
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Two methods were used to change collisionality in 
NSTX H-mode discharges 

Results will be reported from both: 
 
•  Vary Ip, BT at constant Ip/BT (fixed Li evap + no Li evap): Nu scan 

–  Type V (small) ELMs that have minimal impact on confinement 
–  q, β vary strongly: constrain dataset to limited q and β ranges for analysis 

•  Vary amount of between-shots Li evaporation (fixed Ip & BT): Li scan 
–  Type I ELMS (little Li evap): choose analysis times to be inter-ELM 
–  No ELMs (large Li evap) 
–  Ip, BT, q, <β>, κ, …. constant for all discharges 
–  Choose analysis times to have Prad/Pheat < 20% 

•  For both scans, choose analysis times during steady periods      
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A strong dependence of global confinement on between-shot Li 
deposition and collisionality is prominent in the Li Scan 

•  Strong increase in total thermal and electron confinement 
•  Factor of five decrease in collisionality 
•  Strong and favorable dependence of τE with decreasing collisionality 

–  Implications for FNSF (will operate at over one order of magnitude lower νε*) 

x=[Φ/Φa]1/2!Maingi et al. PRL (2011), EX/11-2!
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Not all dimensionless variables are fixed  
across the range of ν*	



ρ* (=ρs/a, a constant) 
changes across range of 
collisionality!

Primarily due to Te profile 
broadening!

Need to normalize confinement trends by ρ* variation!
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Dependence on ν* even stronger when ρ* variations  
are taken into account 

•  Express confinement scaling in terms of dimensionless parameters                                 
ΩτE = BτE = ρ*α f(ν, β, Te/Ti, κ, q, …….) where α = -2 for Bohm and α = -3 for 
gyroBohm scaling  

–  NSTX HeGDC+B discharges found to be consistent with gyroBohm  (Kaye, 2006) 
•  For the Li scan, B, q, <β>, κ, a … constant for all discharges 

Normalize τE further by ρ*α: test both Bohm and gyroBohm!

Bohm normalization! gyroBohm normalization!
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Strong dependence of normalized confinement on ν* also in 
“Nu scan” 

•  Constrain data to qa/2 = 2-2.5 and <βT> = 8.5-12.5% 

Bohm normalization! gyroBohm normalization!
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ne and Zeff variations do not control the  
variation of ν* 

•  Would expect a linear dependence between parameter pairs 
if they were controlling factors  (ν* ~ neZeff) 

Li scan
Nu scan
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The variation in Te and Te profile broadness is the 
fundamental reason ν* (and ρ*)  varies 

Li scan
Nu scan
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Te broadening reflects a strong reduction in electron transport with 
decreasing collisionality in the outer region of the plasma 

•  This can be seen in both χe and χe/χGB, where χGB ~ ρs
2cs/a 

Curves color coded relative to value over full range of collisionality!
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There is a general increase of anomalous ion transport in 
outer regions with decreasing collisionality 

•  The dependences are more complicated 
•  Overall increase in χi/χi,neo with decreasing collisionality, but there is large 

scatter even at similar νe
*	



   ∼Neoclassical (NCLASS) ion transport at lowest collisionality !
   (factor of ~2 uncertainty in χi/χi,neo )!

•  Ion transport also correlated with rotation shear 

Now look at microstability properties of plasmas at high- and low-k 

(= R
2!"
cs
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High-k ETG becomes more stable for lower  
collisionality discharges 

•  Comparison of experimental R/LTe to analytic ETG critical gradient (Jenko 
et al., 2001) indicates reduction of ETG drive as collisionality decreases 
–  Consistent with reduction in electron transport 

•  Linear gyrokinetic indicated 
ETG completely stabilized for 
low collisionality discharges!

•  Stability due to reduced 
Te  gradient!
!(Guttenfelder TH/6-1)!

•  Reduction of high-k turbulence 
(krρθ ~ 5 – 30) at lower 
collisionality in pedestal region!

!(Canik 2011, EX/P7-16)!
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Low-k modes show more complicated dependence 

•  Linear GYRO calcs indicate microtearing 
growth dominates low-k spectrum at high 
collisionality Nu Scan!
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Low-k modes show more complicated dependence 

•  Linear GYRO calcs indicate microtearing 
growth dominates low-k spectrum at high 
collisionality 

•  At low collisionality, microtearing becomes 
weaker 

•  Consistent with reduction in electron 
transport going from high to low collisionality 

Nu Scan!
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Low-k modes show more complicated dependence 

•  Linear GYRO calcs indicate microtearing 
growth dominates low-k spectrum at high 
collisionality 

•  At low collisionality, microtearing becomes 
weaker 

•  Consistent with reduction in electron 
transport going from high to low collisionality 

•  Low-k hybrid mode (TEM/KBM)  predicted 
to exist at low collisionality 

•  Consistent with increase in ion transport 
•  Can provide some electron transport 

•  Mode growth rates near γEXB at low 
collisionality 

•  Non-linear calculations underway to assess 
effect on predicted transport levels 

•  Li scan shows similar result 

Nu Scan!

Guttenfelder TH/6-1!
(next talk)!
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Summary and Conclusions 
 
•  Collisionality is the unifying parameter in understanding confinement 

trends in NSTX plasmas 
•  Normalized confinement shows a strong and favorable dependence with 

decreasing collisionality 
•  Trend is even stronger when Bohm or gyroBohm variation of ρ* is 

taken into account 
•  Improved confinement is governed primarily by reduction in electron 

transport in outer region 
•  Broader Te profiles with decreasing νe

* 
•  ETG, microtearing more stable going from high to low νe

* 
•  Ions, however, become more anomalous going from high to low 

collisionality  
•  Hybrid TEM/KBM mode unstable at low νe

* 
•  Need to assess respective roles of νe

* and rotation shear 

•  Will be able to explore these trends at even lower collisionality (5x) 
with more control of the rotation profile on NSTX-U 
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Two methods were used to change collisionality in 
NSTX H-mode discharges 

Results will be reported from both: 
•  Vary Ip, BT at constant Ip/BT (fixed Li + no Li): Nu scan 
•  Vary amount of between-shots Li evaporation (fixed Ip & BT): Li scan 
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