

An Overview of Recent Results from the National Spherical Torus Experiment

College W&M Colorado Sch Mines Columbia U

Comp-X

General Atomics

Idaho NEL

Johns Hopkins U

Los Alamos NL Lawrence Livermore NL

Lodestar

MIT

Nova Photonics, Inc.

New York U

Old Dominion U

Oak Ridge NL

PPPL

PSI

Princeton U

Purdue U

Sandia NL

Think Tank, Inc.

UC Davis

UC Irvine

OC II VIII

UCLA UCSD

U Colorado

U Maryland

U Rochester

U Washington

U Wisconsin

M.G. Bell Princeton Plasma Physics Laboratory for the NSTX Research Team

International Congress on Plasma Physics
Fukuoka
8 – 12 September 2008

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvoqo U Kyoto U Kyushu U Kyushu Tokai U Niigata U **U** Tokvo JAEA Hebrew U loffe Inst RRC Kurchatov Inst. TRINITI **KBSI** KAIST POSTECH **ASIPP** ENEA. Frascati CEA. Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep **U Quebec**

NSTX Designed to Study High-Temperature Toroidal Plasmas at Low Aspect-Ratio

Aspect ratio A	1.27 – 1.6
Elongation κ	1.8 - 3.0
Triangularity δ	0.2 - 0.8
Major radius R ₀	0.85m
Plasma Current I _p	1.5MA
Toroidal Field B _{T0}	0.4 - 0.55 T
(Pulse Length	~2 - ~1 s)
Auxiliary heating:	
NBI (100kV)	5 - 7 MW
(Pulse Length	5 - 2s)
RF (30MHz)	6 MW (5 s)
Central temperature	1 – 5 keV
Central density	≤1.2×10 ²⁰ m ⁻³

NSTX Contributes to Toroidal Confinement Physics, Preparation for ITER and Fusion Energy Development

- Complements and extends conventional aspect-ratio tokamaks
 - High β : β_T up to 40%, $\beta(0) \sim 1$
 - Intrinsic cross-section shaping ($\kappa > 2$, $B_P/B_T \sim 1$)
 - Large fraction of trapped particles ($\sim \sqrt{(r/R)}$)
 - Large gyro-radius (a/ ρ_i ~ 30–50)
 - Large bootstrap current (>50% of total)
 - Large plasma flow & flow shear $(M \sim 0.5)$ suppresses ion turbulence
 - High dielectric constant ($\epsilon \sim 30-100$)
 - Large population of supra-Alfvénic fast ions $(v_{NBI}/v_{Alfvén} \sim 4)$
 - High divertor power flux (P/R) challenges plasma facing materials
- Explores possibilities for a Plasma-Materials Test Facility or a Component Test Facility (CTF)
 - High heat flux or neutron fluence in a driven system

Scaling Experiments Have Revealed Role of Electron Transport in NSTX Energy Confinement

Heating Electrons with RF Waves Drives Short-Wavelength Turbulence in Plasma Core

- Fast waves at high harmonics of ion-cyclotron frequeny (HHFW) heat electrons through electron Landau damping and TTMP
- Fluctuations measured by low-angle forward scattering of 280 GHz μ-waves

- Detected fluctuations in range $k_{\perp}\rho_e$ = 0.1 0.4 ($k_{\perp}\rho_s$ = 8 16) propagate in electron diamagnetic drift direction
 - –Rules out Ion Temperature Gradient mode ($k_\perp \rho_s \sim 1$) as source of turbulence
 - Qualitative agreement with linear gyrokinetic code (GS2) for Electron Temperature
 Gradient (ETG) mode onset

Electron Gyro-Scale Fluctuations Can Be Suppressed by Reversed Magnetic Shear in Plasma Core

Shear-reversal produced by early NB heating during plasma current ramp

• Suppression of Electron Temperature Gradient (ETG) mode by shear-reversal and high T_e/T_i predicted by Jenko and Dorland, Phys. Rev. Lett **89** (2002)

NSTX Extends the Stability Database Significantly

- · Benefits of
 - Low aspect ratio
 - Cross-section shaping
 - Stabilization of external modes by conducting plates

Non-Axisymmetric Field Correction and Feedback by External Coils Extend Duration of High-β Plasmas

- Programmed correction of intrinsic n = 3 error field maintains toroidal rotation
- Resistive Wall Mode can develop at high normalized-β: terminates discharge
- Feedback on measured n = 1 mode reliably suppresses RWM growth
 - Limitations on time response and applied mode purity explored for ITER

NSTX Accesses Fast-Ion Phase-Space Regime Overlapping With and Extending Beyond ITER

Multi-mode TAE bursts induce fast-ion losses

- Reversed-Shear Alfvén Eigenmodes (RSAE)
- Frequency chirping indicates evolution of q_{min}
 - Matches q(r) analysis with MSE constraint
- Modes also observed in MAST device

MHD Instabilities Affect Confinement of Fast Ions

- Density profile of fast ions (15 65 keV) deduced from Doppler-shifted D $_{\alpha}$ emission by energetic neutrals created by charge-exchange with NBI neutrals
- During TAE avalanches, measured fast-ion losses up to 30%
 - Consistent with neutron rate drop
 - Profile remains peaked

- Low-frequency (kink) activity redistributes fast ions outwards
 - Can destabilize Compressional Alfvén Eigenmodes (CAEs) in outboard midplane region

Peak Heat Flux on Lower Divertor Can Be Reduced By Plasma Shaping

Gas Puffing Near X-point Can Produce Radiative Divertor **Without Affecting Core Confinement**

Obtained by continuous D₂ injection through divertor gap into private flux region

- Outer strike point heat flux reduced to ~20%
- No change in H-mode τ_F

NSTX is Exploring and Developing Lithium-Coated Plasma Facing Components

2005: Injected lithium pellets, 2 - 5 mg, into He discharges prior to D NBI shot

2006: LIThium EvaporatoR (LITER) deposited lithium on divertor between shots

2007: Enlarged nozzle, re-aimed at lower divertor to increase deposition rate

2008: Dual LITERs covered entire lower divertor; shutters interrupted lithium stream during plasmas; evaporated ~200g lithium (reloaded 3 times)

- Also used "lithium powder dropper" to introduce lithium through SOL

Solid Lithium Coating Reduces Deuterium Recycling, Suppresses ELMs, Improves Confinement

• Without ELMs, impurity accumulation increases P_{rad} and Z_{eff}

Non-Axisymmetric Midplane Coils Can Induce Repetitive ELMs in Lithium-Suppressed Plasmas

- n = 3 resonant magnetic perturbation applied
- 11ms duration pulse at 40Hz optimal for this shape (DN, κ =2.4, δ =0.8)
- RMPs have also modified ELM behavior in non-lithium ELMing plasmas

n=3 Error Field Correction With n=1 RWM Feedback and Lithium Coating Extends High- β_N Discharges

Onset of n=1 rotating modes avoided

NSTX record pulse-length = 1.8s

 $\beta_N \ge 5$ sustained for 3-4 τ_{CR}

• EF/RWM control sustains rotation, high β

Flux consumption reduced by sustained high β + Li conditioning

• High elongation κ = 2.4 increases bootstrap current fraction

0.0

0.5

1.0 Time (s)

Coaxial Helicity Injection (CHI) Generated 160 kA of Toroidal Plasma Current in NSTX

- After I_{CHI}→0, EFIT reconstructs detachment from injector and resistive current decay
 - Decay rate consistent with $T_e = 10 20 \text{ eV}$

CHI Initiated Discharge Successfully Coupled to Inductive Ramp-up with NBI and HHFW Heating

- Discharge is under full equilibrium control
- Loop voltage is preprogrammed
- With lithium coating, CHI-initiated discharges are more reproducible and reach higher currents with similar inductive flux

NSTX is Revealing New Physics in Toroidal Magnetic Confinement and Developing the Potential of the ST

- Investigating the physics of anomalous electron transport
 - Electron transport dominates as a result of ion-scale mode suppression
- Extending the understanding of MHD stability at high β
 - Extending pulse length through active control of low-n modes
- Examining stability and effects of super-Alfvénic ions
 - Measuring transport of fast ions due to spectrum of Alfvén eigenmodes
- Developing techniques to mitigate high heat fluxes on PFCs
 - Extreme flux expansion and creating radiative divertor
- Assessing the potential of lithium as a plasma facing material
 - Solid lithium coatings of PFCs reduce recycling, improve confinement
 - Liquid lithium divertor will be installed for experiments in 2009
- Developing alternate methods for plasma startup and sustainment
 - Coaxial Helicity Injection can replace inductive initiation

"Angelfish" MHD Phenomenon Identified as Form of Hole-Clump, Consistent with Theory

- Compressional Alfvén Eigenmode satisfies Doppler-shifted resonance condition for calculated fast ion distribution ($\omega = \omega_c k_{||} v_{beam}$)
 - Fast ions modelled with TRANSP code using classical slowing down
- Growth rate from theory in reasonable agreement with observation
- Controlling fast-ion phase space can suppress deleterious instabilities
 - "Angelfish" instability suppressed by addition of HHFW heating

Improvement in Confinement with Lithium Mainly Through Broadening of Electron Temperature Profile

- Broader electron temperature profile reduces internal inductance I_i and inductive flux consumption in current flattop, despite higher Z_{eff}
- Lithium increases edge bootstrap current through higher p', lower collisionality

In 2009, NSTX Will Begin Investigating Liquid Lithium on Plasma Facing Components

Liquid Lithium Divertor (LLD)

- Replace rows of graphite tiles in outer lower divertor with segmented plates
- Molybdenum surface on copper substrate with temperature control
 - Heated above Li melting point 180°C
 - Active heat removal to counteract plasma heating
- Initially supply lithium with LITER and lithium powder dropper
- Evaluate capability of liquid lithium to sustain deuterium pumping beyond capacity of solid film
- Upgrade to long-pulse capability will require method for core fueling
 - Compact Toroid injection or frozen deuterium pellets