

TBR and Shielding Analyses in Support of ST-FNSF Study

L. El-Guebaly, L. Mynsberge, A. Jaber (University of Wisconsin - Madison)

J. Menard, T. Brown (Princeton Plasma Physics Laboratory)

SOFE June 10 - 14, 2013 - San Francisco, CA

Potential Pathways to Fusion Energy

ST-FNSF Goal and Missions

Goal: provide technical basis for DEMO through:

- Design integration
- · Component and materials testing.
- Mission elements include:
 - · Realistic neutron environment for testing
 - > 1 MW/m² NWL at testing components
 - Tritium self-sufficiency
 - Power plant relevant materials
 - Steady state operation
- Rapid component replacement

ST-FNSF Design

Major Radius Minor Radius Fusion Power	1.69 0.97 162	m m MW	
Plant Lifetime	~20	years	6 F. II B
Availability	10-50%		6 Full Power Years (FPY)
	30% average		J

IB & OB Radial Builds

Evolution of 3-D TBR

1 m thick **homogeneous** OB **DCLL** blanket. 2 cm thick W Stabilizing Shell between blanket segments. No penetrations or TBMs on OB (to be added in future). 1/40th model for 3-D analysis.

- TBR of final design will be < 1.08.
- Reasons:
 - Heterogeneity of blanket (~ 5% lower TBR)
 - Inclusion of OB penetrations and TBMs (~ 5% lower TBR).

NWL Peaks at ~1.5 MW/m² at OB Midplane for Blanket and Materials Testing

Dose to MgO Insulator of Bitter Coil and PF 3&4 Coils < 10¹¹ rad Limit @ 6 FPY PF 34 Coils Str. Coils Str. Coils PF 34 Coils Str. Coils VV, Shield-I and Shield-II surrounded with 2 cm thick FS Water Str. Coils Str. Coils

Conclusions

- PF magnets with MgO insulator are well protected.
- Overall TBR could reach unity with extended blanket coverage and minimization of OB penetrations.
- Advanced divertors may call for larger divertor slot that reduces blanket coverage and TBR.
- Smaller machines will have difficulty achieving TBR of 1 since higher fraction of OB is devoted to TBMs and heating ports.

Acknowledgement: work supported by PPPL