

3rd IAEA TM and 11th IWS on ST Place: St.Petersburg Date: 04 Oct 2005

#### Model of filaments in plasma

#### **Nobuhiro Nishino**

Graduate school of Engineering Hiroshima University

1



#### Filaments with a wide-angle view **RF** antenna Filaments (and the Center stack & gas puff vacuum vessel) with a wide-angle view from midplane port **RF** antenna 13500FPS limiter – R **Usually filaments** 27000FPS move across the magnetic field. **Filaments hit** the RF antenna and/or its It is clear that limiter filaments moves across the LCFS at == the initial discharge phase (Ohmic). 13500FPS



#### Multi-curtain and magnetic signal

- Multi-curtain is correlated with the precursor.
- After ELM or blob goes through near X-point, ELM or blob is almost toroidal symmetry.
- Because the X-point has no poloidal field.
- →two-dimensional
- **→**multi-curtain
- Multi-curtain may show "ELM structure".



**Reversed image** 



### Aim

- Filament-like edge turbulences called just "filaments" are seen in many ST and tokamak plasmas for fusion experiments.
- They should be related to the energy/particle confinement.
- Therefore, it is very important to understand the unknowns such as where the filament is forming, its radial and poloidal/toroidal extent and dynamics.
- What is the origin of the filament?
  - Is it in infancy?
- What forces move the filament?
  - ExB force or JxB force
  - In experiment, a multi-curtain structure correlated to the magnetic oscillation signal.
  - This result may show the magnetic reconnection occurs by the filament. → The current may exist in the filament.
- Can single fluid MHD theory treat them?
  - Single fluid MHD is very useful to treat real-sized plasmas.



### Scenario of this model (Overview)

- In this model, the origin of a filament is assumed to be non-homogenous (non-uniformity) heating in the same magnetic field line or flux.
- The origin is
  - the hot region called "blob" due to the non-uniform heating
  - there are the hot and cold regions in the same magnetic field line or flux.
- Where it is forming?
  - Due to the temperature difference, thermal conduction parallel to the magnetic field by electrons occurs.
    - Also thermal conduction perpendicular to the magnetic field by ions occurs simultaneously.
  - Mainly parallel thermal conduction makes the blob into the filament-like structure.



### Scenario of this model (Overview)

- The current penetrate in the filament from its surroundings due to the magnetic diffusion.
- The change of current density makes two motions, such as
  - expand
  - shrink or pinch
- The magnetic diffusion and thermal conduction are the major role in the filament life.
- →In this model, three important factors appears.
  - thermal conduction parallel to the magnetic field
  - thermal conduction perpendicular to the magnetic field
  - magnetic diffusion



### Assumption of this model

- Initial plasma is the equilibrium state, then the non-uniform heating occurs. (e.g. Additional heating)
- The non-uniform heating process makes a "blob".
  - e.g. Non-uniformity of NBI heating is a few % to 10 few %.
  - See the energy deposition profile of NB
- The "blob" is hotter region than that of the other region in the same magnetic field line or flux.
- The "blob" expands mainly along the magnetic field due to the thermal conduction.





#### Aspect ratio of a filament

- Ratio of the thermal conductivities parallel and perpendicular to the magnetic field line are as follows.
- Using Lagrange system, the equation of thermal conduction is

$$\frac{3n_e}{2}\frac{dT}{dt} = \lambda \nabla^2 T$$

then

$$\frac{3n_e}{2} \frac{L_{//}^2}{\lambda_{//}} = \Delta t_{//} \qquad \lambda_{//} = 3.16 \frac{n_e T_e \tau_e}{m_e}$$
$$\frac{3n_i}{2} \frac{a_f^2}{\lambda_\perp} = \Delta t_\perp \qquad \lambda_\perp = \frac{2n_i T_i}{m_i \Omega_i \tau_i}$$

- where L<sub>//</sub> is a length of the filament along the field line, a<sub>f</sub> is a length of the filament across the field line.
- Te=Ti, ne=ni are assumed due to the single fluid MHD





magnetic field line



#### Aspect ratio of a filament - continued -

• Let  $\Delta t_{II}$  equal  $\Delta t_{\perp}$ .

$$\frac{3n_{e}}{2} \frac{L_{//}^{2}}{\lambda_{//}} = \frac{3n_{i}}{2} \frac{a_{f}^{2}}{\lambda_{\perp}} \qquad \therefore \frac{a_{f}}{L_{//}} = \sqrt{\frac{\lambda_{\perp}}{\lambda_{//}}}$$

$$\left(a_{f} / L_{//}\right)^{2} = \frac{2}{3.16\Omega_{e}\tau_{e}\Omega_{i}\tau_{i}} \propto \frac{n^{2}}{B^{2}T^{3}} \qquad \left(a_{f} / L_{//}\right) \propto \frac{n}{BT^{3/2}}$$

- This value is very small at the edge parameters.
  - e.g. ne=5e18m-3, Te=20eV The ratio is 1.66e-4
  - Proportional to n, B<sup>-1</sup>, T<sup>-3/2</sup>
- L<sub>//</sub> is not longer than 2πqR, then thermal conduction time should not excess

$$\Delta t_{//} < \Delta t = \frac{3n_e}{2} \frac{(2\pi qR)^2}{\lambda_{//}}$$

• Most likely  $L_{//}$  is  $\pi q R$ .



### **Evolution process of a filament**

Using single fluid MHD we can deduce a simple formula.

$$\rho \frac{dV}{dt} = -\nabla p + j \times B$$

In steady state

$$0 = -\nabla p_0 + j_0 \times B_0$$

Then the non-uniform heating occurs.

$$\rho \frac{dV}{dt} = -\nabla \left( p + \tilde{p} \right) + \left( j_0 + \tilde{j} \right) \times \left( B_0 + \tilde{B} \right)$$
$$\tilde{p} = n\Delta T$$



### Estimation of the current density in a filament

- Magnetic diffusion time 

   current penetration
- Using parallel circuit model the current density is estimated as at most (total plasma current may not change)

$$\tilde{j} = j_0 \left( \frac{\eta_0}{\eta} - 1 \right) = \frac{3}{2} \frac{\Delta T_e}{T_e} j_0$$

The current in the filament makes the filament motion complicated.





#### **Evaluation of the jXB force of the filament**

Using the penetration current formula, we get

$$\tilde{j} \times B_0 = \frac{3\Delta T_e}{2T_e} j_0 \times B_0$$

$$j_0 \times \tilde{B} = \frac{3\mu_0 a_f \Delta T_e}{4T_e} j_0^2$$

$$\tilde{B} \approx \frac{\mu_0 \tilde{j}\pi a_f^2}{2\pi a_f} = \frac{\mu_0 a_f \tilde{j}}{2} \approx \frac{3\mu_0 a_f \Delta T_e}{4T_e} j_0$$

$$\tilde{j} \times \tilde{B} = \frac{9\mu_0 a_f}{8_e} \left(\frac{\Delta T_e}{T}\right)^2 j_0^2$$

• Thus,  $\tilde{j} \times B_0$  is always largest.

$$\tilde{j} \times B_0 \Box \quad j_0 \times \tilde{B} \Box \quad \tilde{j} \times \tilde{B}$$



#### Evaluation of the jXB force of the filament -continued.

Comparison with pressure gradient

$$\nabla \tilde{p} \Box \frac{\Delta T_e}{T_e} \nabla p_0 = \frac{\Delta T_e}{T_e} j_0 \times B_0$$
$$\tilde{j} \times B_0 = \frac{3\Delta T_e}{2T_e} j_0 \times B_0$$

- Thus,  $\tilde{j} \times B_0 > \nabla \tilde{p}$
- JxB force due to the penetration current expand a part of the blob and also pinch the other part.
- Hot region -> expanding (low density region) + pinch (high density region)





magnetic field line



#### Movement depend on the initial figure of a "blob"

- In general a figure of blob is not spherical nor cylindrical symmetry.
- therefore, the movement due to the penetration current may be more complicated.



The rotation may occur due to the conservation of momentum

#### Gas Puff Imaging (GPI) provides various motions of filaments



S.Zweben



#### magnetic diffusion vs. thermal conduction

- Using the induction equation of the magnetic field B
- magnetic diffusion time is  $\tau_{md} = \frac{\mu}{n} a_f^2$
- thermal conduction time is

$$\Delta t_{\perp} = \frac{3n_i}{2} \frac{{a_f}^2}{\lambda_{\perp}}$$

 Therefore, if these times are equal, the generation rate of the filament may be the maximum.



#### **Birth location of a filament**

 Let the magnetic diffusion time equal the thermal conduction time across the magnetic field to deduce the birth position of the filament.

$$\tau_{md} = \Delta t_{\perp}$$

$$\frac{\mu_0 a_f^{2}}{\eta_f} = \frac{3n_f a_f^{2}}{2\lambda_{\perp}}$$

$$\beta_{f} = \frac{n_{f}T_{f}}{{B_{f}}^{2}/{2\mu_{0}}} = \frac{3}{4}\sqrt{\frac{m_{e}}{m_{i}}}$$

- In H plasma,  $\beta_f = 0.0124$
- In D plasma, β<sub>f</sub>=0.00875
- Therefore, the birth position of the filament is the edge of ST and/or tokamak plasmas.



## **Evaluation of the filament velocity V**<sub>perp</sub>

Using the equation of motion we get

$$\rho \frac{d\mathbf{V}}{dt} = O(\tilde{\mathbf{j}} \times \mathbf{B}_{\mathbf{0}})$$

$$V \approx \frac{\Delta T_e j_0 B_0}{8\rho T_e} \tau_{md} = \frac{\Delta T_e p_0 \tau_{md}}{8T_e n_i m_i L_p} = \frac{\Delta T_e \tau_{md}}{8m_i L_p}$$

- Therefore, the filament moves rapidly with the increase temperature difference △Te.
- This velocity should be related to the filament generation rate, because the filament escape the heating region.



### Scaling law using this model

The energy in a filament is estimated at

$$\Delta W_f = n_f T_f \pi a_f^2 L_{//}$$

If the filament goes out the plasma within the magnetic diffusion time, then the power loss of the filament is about
T = 2L

$$P_{out,1fil} = \frac{1}{2} \frac{\Delta W_f}{\tau_{md}} = \frac{n_f T_f \pi a_f^2 L_{//}}{2\mu_0 a_f^2} = \frac{n_f T_f \eta_f \pi L_{//}}{2\mu_0}$$

- where numerical factor <sup>1</sup>/<sub>2</sub> is due to the random walk of the filament.
- In general the energy confinement time is defined as follows.

$$0 = P_{input} - \frac{W}{\tau_E} = P_{input} - W \left( \frac{1}{\tau_{E,NC}} + \frac{1}{\tau_{E,fil}} + \cdots \right)$$



### Scaling law using this model - continued.

 In steady state, the power loss of the filaments may equal the total input power

$$P_{input} = N \times P_{out,1fil}$$

- where N is related to the generation rate of the filaments.
- N may be related to the input power, because the generation rate of the filament depends on the temperature rise of the blob and the non-uniform efficiency.

$$N \propto \left(\xi_{OH} P_{OH} + \xi_{NBI} P_{NBI} + \cdots\right)$$

- where each  $\xi$  is the non-uniform efficiency of each heating method, respectively. In general these efficiencies are not equal.  $\xi_{OH} < \xi_{NRI}$  In general  $\xi_{OH} < \xi_{addtional heating}$
- Then, only OH heating case N is proportional to P<sub>total</sub>.
- In general  $N \propto P_{total}^{\alpha}, \quad 0 < \alpha \leq 1$



### Scaling law using this model - continued.

At last the energy confinement time is estimated as

$$\tau_{E,fil} = \frac{W}{N \times P_{out,1fil}} = \frac{W}{N \frac{n_f T_f \eta_f \pi L_{//}}{2\mu_0}}$$

• Let  $L_{//} = \pi Rq$  and  $B_f \approx B_t$  in above equation, and use



$$\tau_{E,fil} \propto \frac{\langle nT \rangle I_P V}{N n_f^{1.5}} \propto \frac{\langle nT \rangle I_P V}{P^{\alpha} n_f^{1.5}}, \quad 0 < \alpha \le 1$$

• It seems L-mode scaling, even though this is not a dimensionless formula yet.  $\tau_E = \frac{1}{B}F\left(\frac{T}{a^2B^2}\right)$ 



#### Conclusion

- A filament model using simple fluid MHD is proposed.
- In this model a "blob" mainly expand along the magnetic field line, and the blob becomes a filament-like shape.
- That is called the "filament".
- In this model, the generation and extinction processes of the filament are decided by the magnetic diffusion and thermal conduction.
- According this model the scaling of the energy confinement time is also estimated.
- The scaling obtained using this model is similar to the Lmode scaling.



### Further problem of this model

- What condition determine the generation rate of filaments?
- Can we get completely L-mode scaling?
  - dimensionless formula
- What is the L-H transition and H-mode?
- Can we get cheap nuclear fusion reactor?
  - It is further question

# **GPI Diagnostic setup in NSTX**

- Use re-entrant port and linear gas manifold.
- Use **He**,  $D_2$ , or Ar puffs.
- Use beam-splitter and PMTs (100 kHz bandwidth) for discrete fast chords.

S.Zweben





VSTX



#### Typical power deposition profile of NB in NSTX





#### **Interpretation of multi-curtain**

- Multi-curtain may be the magnetic surfaces, which are dragged by ELMs or blobs.
- After ELM or blob goes through near X-point, ELM or blob is almost toroidal symmetry.
- Because the X-point has no poloidal field.
- two-dimensional
- →multi-curtain
- Multi-curtain may show "ELM structure".

#### Photron

70000 fps Start

#### FASTCAM-APX RS 2...

1/245000 sec frame : 9101

### 128 x 128 +00:00:00.130000sec

