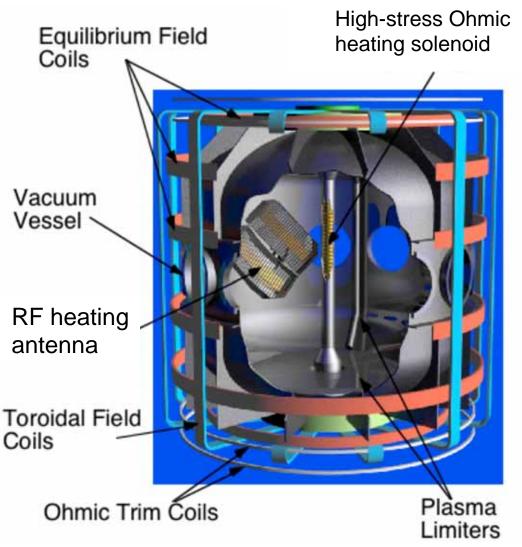
Plasma Startup via Local Helicity Injection and Stability Studies at NearUnity Aspect Ratio in the Pegasus Experiment

R.J. Fonck, J.L. Barr, M.W. Bongard, M.G. Burke, E.T. Hinson, A.J. Redd, N. Schoenberg, D.J. Schlossberg, K.E. Thome

The Joint Meeting of 5th IAEA Technical Meeting on Spherical Tori

16th International Workshop on Spherical Torus (ISTW2011)


2011 US-Japan Workshop on ST Plasma

National Institute for Fusion Science, Toki, Japan September 27-30, 2011

PEGASUS is a Compact Ultralow-A ST

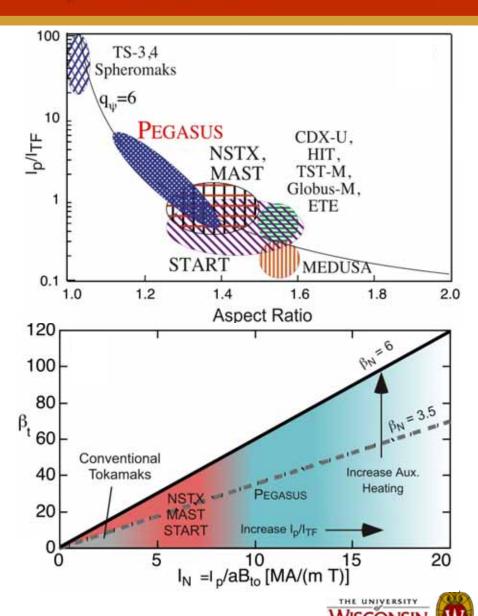
Experimental	Parameters \
<u>Parameter</u>	To Date
A	1.15 - 1.3
R(m)	0.2 - 0.45
$I_{p}(MA)$	≤ .22
$I_N (MA/m-T)$	6 - 12
l_{i}	0.2 - 0.5
κ	1.4 - 3.0
$\tau_{\rm shot}$ (s)	\leq 0.025
β_{T} (%)	≤ 25
$P_{HHFW}(MW)$	0.2

PEGASUS Mission: Physics of Low A \rightarrow 1

University-scale, Low-A ST

 $-R_0 \le 0.45 \text{ m}, \text{ a} \sim 0.40 \text{ m}$

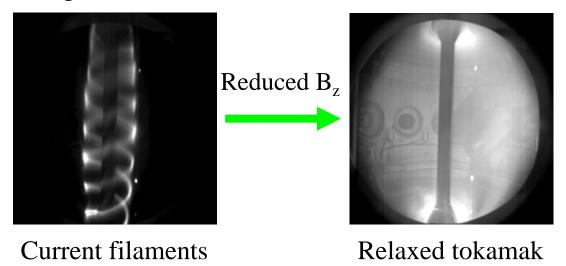
Physics of High I_p/I_{TF}


- Expand operating space of the ST
- Study high β_T plasmas as $A \rightarrow 1$

Non-solenoidal startup

- Point-source helicity injection
- Helicity injection discharges couple to other current drive methods

Peeling-mode studies


• Experimental tests of peeling-ballooning theory (ELM, ITER)

Local Plasma Current Sources + Helical Vacuum Field Give Simple DC Helicity Injection Scheme

- Current is injected into the existing helical magnetic field
- High I_{ini} & modest B ⇒ filaments merge into current sheet
- High I_{inj} & low B \Rightarrow current-driven B_{θ} overwhelms vacuum B_z
 - Relaxation via MHD activity to tokamak-like Taylor state w/ high toroidal current multiplication

• Technical attractiveness: can remove sources and anode after startup

DC Helicity Injection Startup on PEGASUS Utilizes Localized Washer-Gun Current Sources

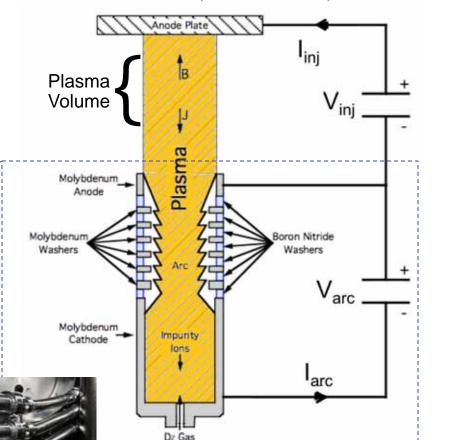
Plasma gun(s) biased relative to anode:

Helicity injection rate:

$$\dot{K}_{inj} = 2V_{inj}B_NA_{inj}$$

 V_{ini} - injector voltage

 B_N - normal B field at gun aperture


3 plasma guns

A_{ini} - injector area

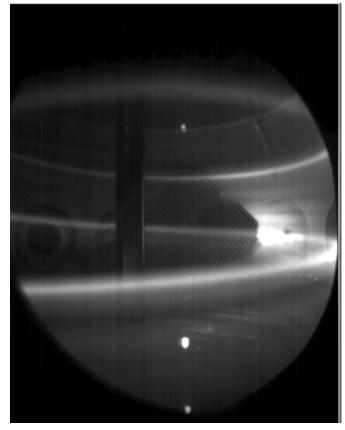
Anode

Plasma

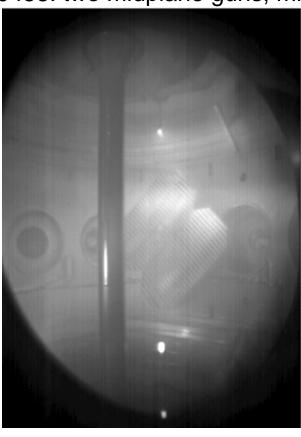
streams

Simplified illustration of a plasma gun for helicity injection

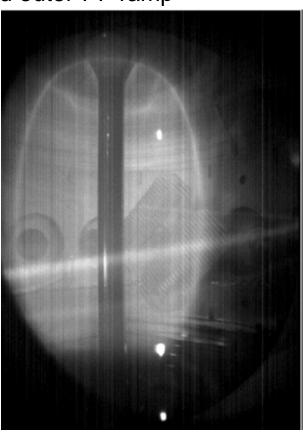
(not to scale)


Midplane Injection

WISCONSIN MADISON



Evolution of midplane-gun-driven plasma


PEGASUS shot #40458: two midplane guns, mild outer-PF ramp

t=21.1 ms, I_p=2-3 kA Filaments only

t=28.8 ms, I_p=42 kA Driven diffuse plasma

t=30.6 ms, I_p=37 kA Guns off, Decaying

Taylor Relaxation Criteria Sets the Maximum $\mathsf{I}_{\scriptscriptstyle \mathrm{D}}$ for a Given Magnetic Geometry

Helicity balance in a tokamak geometry:

$$\frac{dK}{dt} = -2\int_{V} \eta \mathbf{J} \cdot \mathbf{B} \, d^{3}x - 2\frac{\partial \psi}{\partial t} \Psi - 2\int_{A} \Phi \mathbf{B} \cdot d\mathbf{s} \qquad \Longrightarrow \qquad I_{p} \leq \frac{A_{p}}{2\pi R_{o} \langle n \rangle} \left(V_{ind} + V_{eff} \right)$$

$$I_{p} \leq \frac{A_{p}}{2\pi R_{0} \langle \eta \rangle} \left(V_{ind} + V_{eff} \right)$$

- Helicity injection can be expressed as an effective loop voltage
- I_p limit depends on the scaling of plasma confinement via the η term

$$V_{\it eff} pprox rac{A_{\it inj} B_{\phi\,,\it inj}}{\Psi_{\it T}} V_{\it bias}$$

Taylor relaxation of a force-free equilibrium:

$$\nabla \times B = \mu_0 J = \lambda B$$

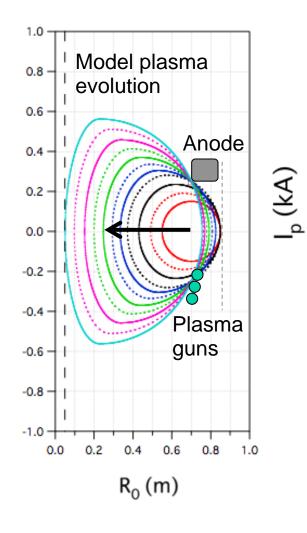
$$\lambda_p \leq \lambda_{edge} \longrightarrow \frac{\mu_0 I_p}{\Psi_T} \leq \frac{\mu_0 I_{inj}}{2\pi R_{inj} w B_{\theta, inj}} \longrightarrow I_p \leq \left[\frac{C_p}{2\pi R_{inj} \mu_0} \frac{\Psi_T I_{inj}}{w} \right]^{1/2}$$

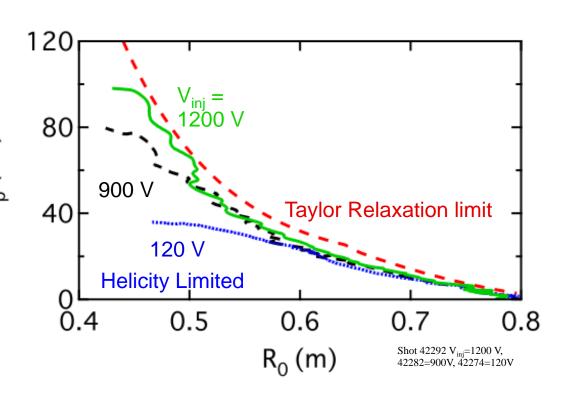
Assumptions:

- Driven edge current mixes uniformly in SOL
- Edge fields average to tokamak-like structure

A_n Plasma area

C_p Plasma circumference

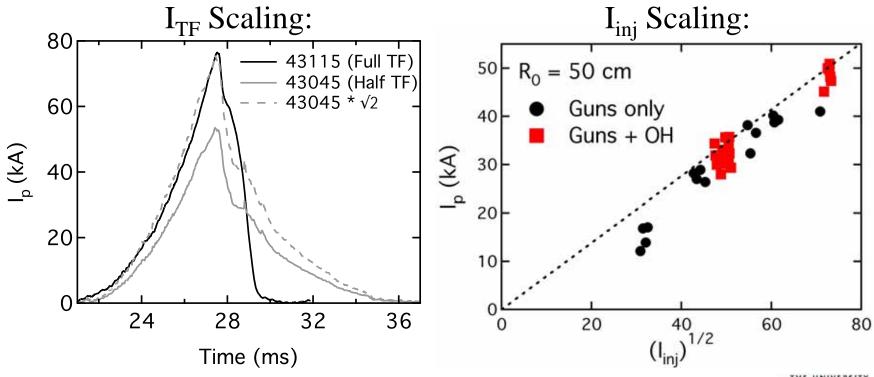

 Ψ_T Plasma toroidal flux


w Edge current channel width

Achieving the Maximum Ip at the Taylor Limit Requires Sufficient Helicity Injection Input Rate

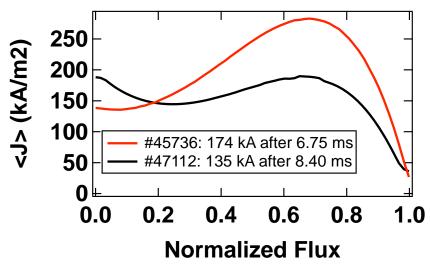
- Helicity input rate, and effective net volt-seconds, increases as V_{ini} increases
- Sufficient net V-sec needed to reach Taylor relaxation limit

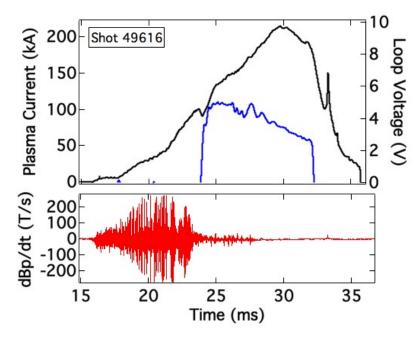
THE UNIVERSITY



Experiments Confirm Relaxation Limit Scalings with I_{TF} and I_{ini}

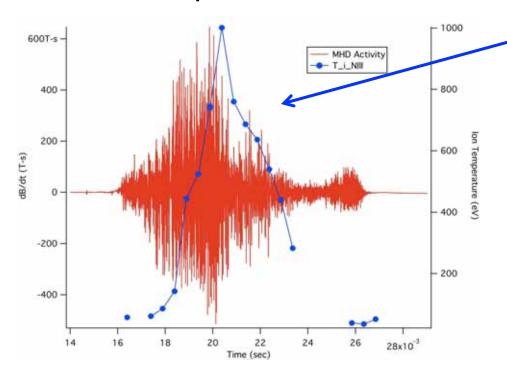
The relaxation limit I_p scales with:

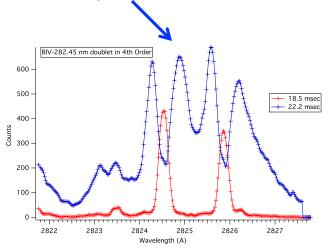

$$I_p \propto \left[\frac{I_{TF} I_{inj}}{w} \right]^{1/2}$$


Experimental plasma current limits follow these scalings:

Slowly-evolving Gun-driven Plasmas Hand Off Most Efficiently to Ohmic Drive

- Poloidal flux generated by helicity injection is equivalent to that generated by Ohmic Drive
 - $I_{total} = I_{HI} + I_{OH}$
- Excessive skin current => poor coupling to OH drive
- Slowly evolving: ~ flat j(r) (black)
 - Smooth handoff to Ohmic inductive drive (j(R) profiles from external-only equilibrium reconstructions; $l_i < 0.3$)
- Rapidly evolving: ~ hollow, strong skin j(r) (red)
 - Does not hand off efficiently to Ohmic drive

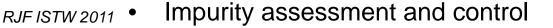



Initial Spectroscopy Measurements Suggest Energetic Ions

 Spectroscopic T_i suggest high ion energies during reconnection period

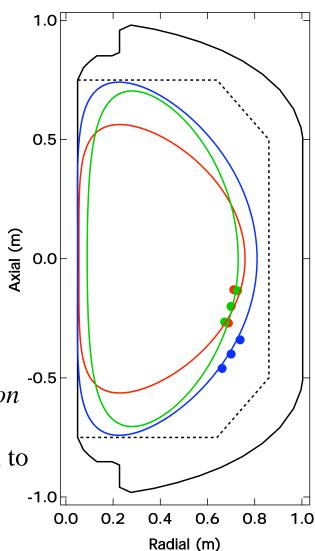
Doppler T_i from radial view

Complex multi-line structures from tangential view


- However, situation is much more complex if viewed toroidally
 - Need improved time-resolution and spatial scans

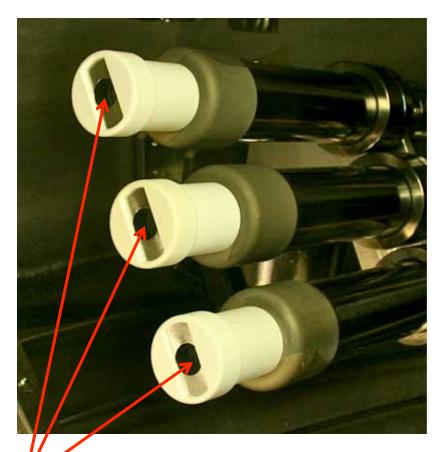
Several Issues to Address for a Predictive Model

- Extension to higher current, longer pulse
 - Verify limit scalings
 - Discharge evolution for long growth phase
 - Test confinement properties, especially $T_e(r,t)$
 - Helicity dissipation scaling model
- Optimal gun-electrode configuration
- Increased helicity injection rate
 - Test regime where helicity drive dominates PF induction for growth
 - Active guns vs. passive electrode approach for long-pulse growth
- Injected current source impedance model
 - What sets helicity injection rate?
- Edge j(r) measurements and λ(ψ,t)
 - Physics of ultimate relaxation limits
 - Current transport: MHD behavior



Gun-Electrode Geometry: PF Induction, Plasma Size, and Null Formation

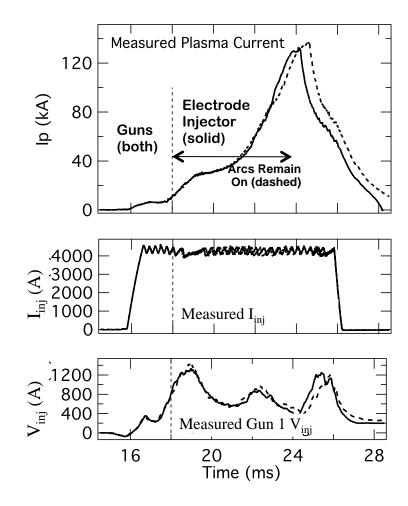
- Original: array was nearly vertical (red):
 - J_{edge} width w scaled with # of guns
 - Maximum $I_p = 0.11$ MA.
- Aligned gun array tilt (green):
 - Maximum $I_p = 0.17$ MA.
 - 3-fold reduction in w., consistent with changing the projected width at midplane.
- Maximize plasma size: array moved further away from midplane (blue):
 - Maximum $I_p \sim 0.13 \text{ MA}$
 - Larger startup plasma = reduced PF induction
 - Poorer poloidal field null formed by current streams = more difficult to induce relaxation to tokamak state
- Tight gun-anode geometry preferred



Active Gun / Passive Electrode Assembly Points to Simpler, Higher I_p Operation

- Potential for much higher I_{inj} without need for either more plasma guns or larger guns.
- Helicity injection physics is agnostic to the exact source of the edge charge carriers.
- Passive electrodes allow arbitrary shaping:
 - Can optimize both helicity input (large cross-sectional area)
 and the Taylor limit on I_p (narrow in radial direction)

Plasma Guns with Integrated Slotted Electrodes

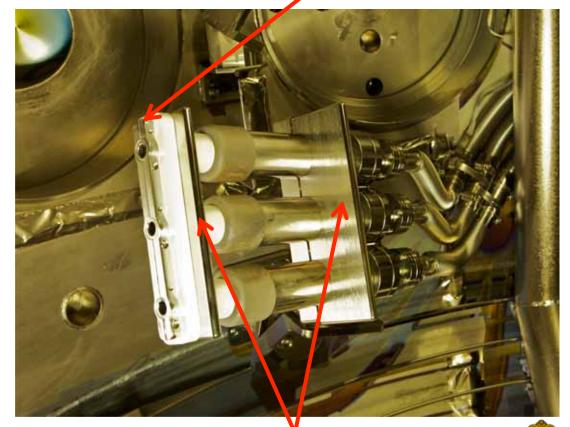

Initial Tests of Gun/Electrode Helicity Injection System Are Promising

Operations use two steps:

- 1. Form initial tokamak-like state with minimal active arc gun
- 2. Grow to much larger I_p with passive electrodes fed by electrode charge carriers induced and moderated by tokamak edge plasma.

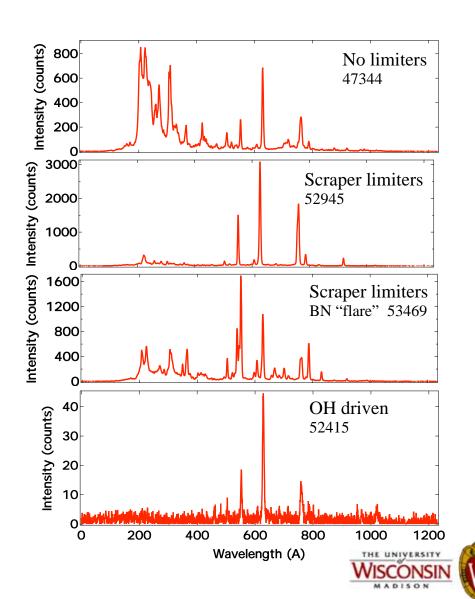
First tests are promising

- Arc current off after relaxation and formation of tokamak-like state
- I_p rise is virtually the *same*, whether arc discharge or passive electrode provide the charge carriers



Integrated Arc Gun – Passive Electrode Experiments Begun

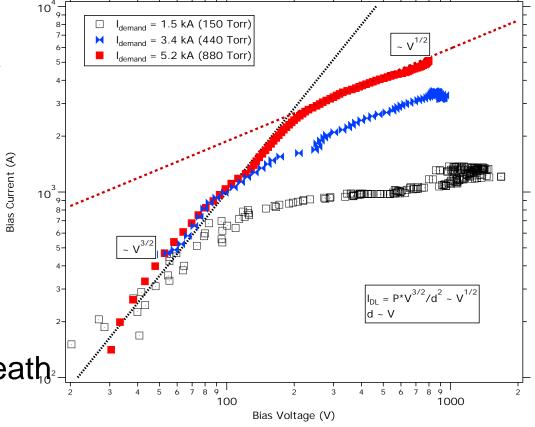
- New gun-electrode assembly has has extended electrode coupled to arc gun exit cathodes
 - Offers 5-times increase in helicity injection rate
- Integrated scraper limiters to protect assembly and control local edge density
 - Gas-puff control of $V_{\text{bias}} \sim V_{\text{loop, effective}}$



Local Limiters Reduce N to Negligible Levels in Well-behaved Injection Cases

- N dominant impurity with unprotected gun assembly
 - 1st estimates of impurity content via bolometer measures
 - $Z_{eff} \sim 2.2$. +/- 0.8 during injection; ≤ 1.4 after injection
 - Mainly N; $n_e \sim 5 \times 10^{18} \text{ m}^{-3}$ to 2 $\times 10^{19} \text{ m}^{-3}$
- Local scraper limiters much reduce N, O remains
- Bursts of N still evident with flare at BN surface
- Ohmic-only reference plasma very clean
 - Zeff ≤ 1.2

Source Impedance Appears to be Governed by Sheath Physics

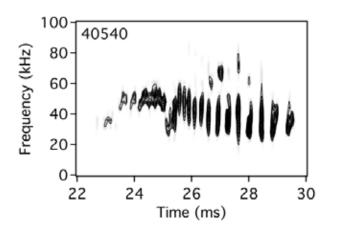

 Model evolving for source impedance ~ helicity injection rate

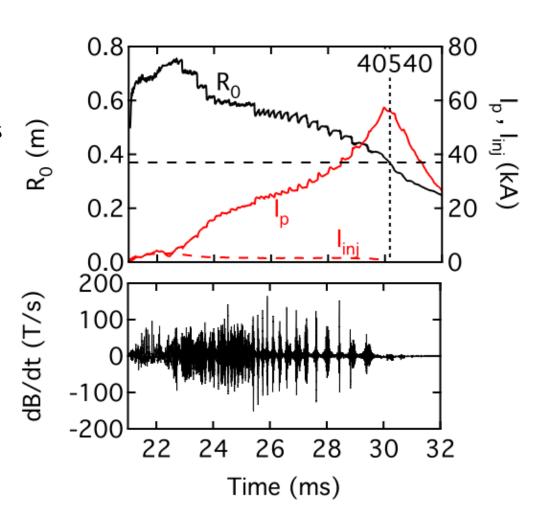
- Predicative model requires edge density measurements
- Initiation phase: vacuum space charge limitation

$$- I_{\text{bias}} \sim V^{3/2} / d^2$$

 High I_{bias} drive phase: expanding double layer sheath

$$- d^2 \sim V => I_{\text{bias}} \sim V^{1/2}$$

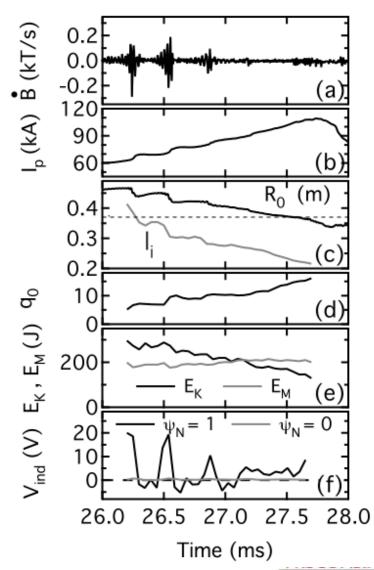




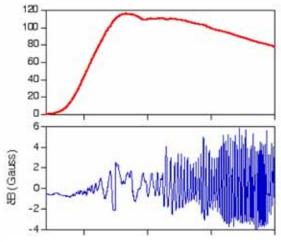
Intermittent 20 - 60 kHz n = 1 mode observed with strong edge current drive

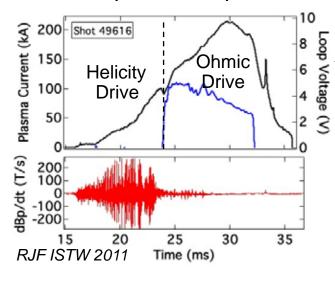
Bursts of n = 1 magnetic oscillations

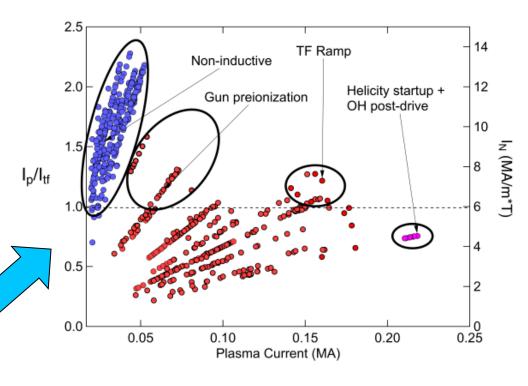
- Observed when plasma is coupled to edge current drive
- Different in nature from inboard current injection experiments



The magnetic topology quickly changes with each burst of MHD activity


- Each burst typically ~ 0.1 ms
- With each burst...
 - I_i decreases → I_p increases
 - − R_O decreases → plasma expands
 - $B_{\phi O}$ increases → q_O increases
 - Slight drop in E_k and E_m
 - Very little change in poloidal flux at plasma edge
 - Rapid decrease in the total trapped poloidal flux




Current Drive Tools Providing Access to High Field Utilization Regime

OH only = large 2/1 modes limit I_p

HI startup = MHD quiescent

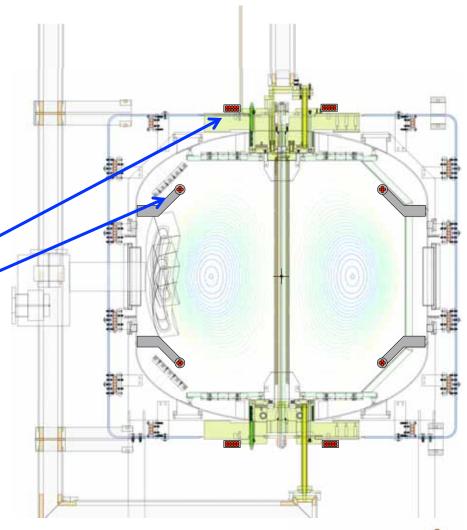
- Helicity injection startup and Ohmic sustainment provides MHD-stable profiles at $I_p/I_{TF} < 1$
- Need to extend to higher I_p , then to low I_{TF} for high I_N and high β_T as $A{\approx}1$

Medium-Term Upgrades Will Allow Further Tests of Point-Source Helicity Injection

• Gun-electrode Evolution

- Passive electrode material variations
 - · C electrode being installed
- Separate plasma gun and electrode

Power Supplies, Heating

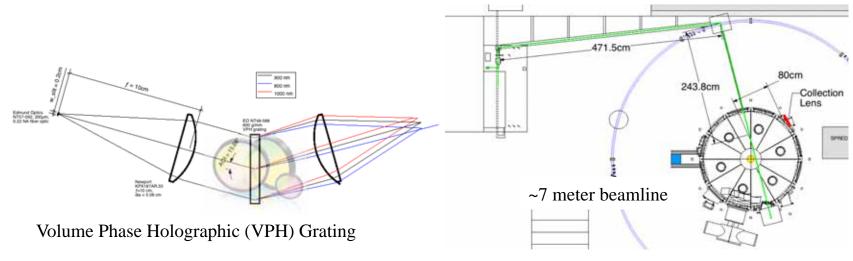

- New helicity injection power: 2 kV, 15 kA
- Double TF current: Taylor limit increase
- Commission HHFW system: electron heating

Expanded PF Coil Set and control

- Internal coils for radial position control
- New external divertor coils
- Implement GA Plasma Control System

Diagnostic Additions

- Multipoint Thomson Scattering
- High-speed $T_i(r,t)$
 - Anomalous reconnection heating

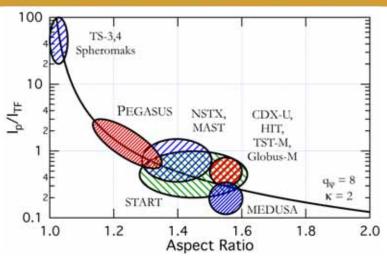


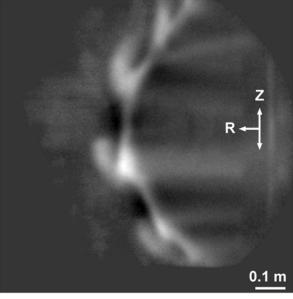
Thomson Scattering system uses new technologies for visible wavelength system

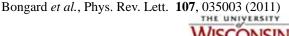
- Frequency doubled Nd:YAG laser provides ~10¹⁸ photons
- For typical PEGASUS plasma, $n_{\text{scattered}} \sim 10^4 \text{ photons}$
- VPH grating efficiency >85% for $\lambda_{inc} = 532 632$ nm
- Gen III image intensifiers ~50% efficient in visible region
- ~ 6 ns ICCD gating provides easy detector technology

Laser Specifications	Value
Output Energy at 532 nm	≥ 2000 mJ
Beam diameter at head	12 mm
Beam diameter at waist	3 mm
Pointing stability	≤ 50 µrad
Divergence	≤ 0.5 mrad
Repetition Rate	≤ 10 Hz
Pulse length	≥ 10 ns

HI Conclusion: High-I_p Non-Solenoidal Startup via Point-Source Helicity Injection Looks Promising

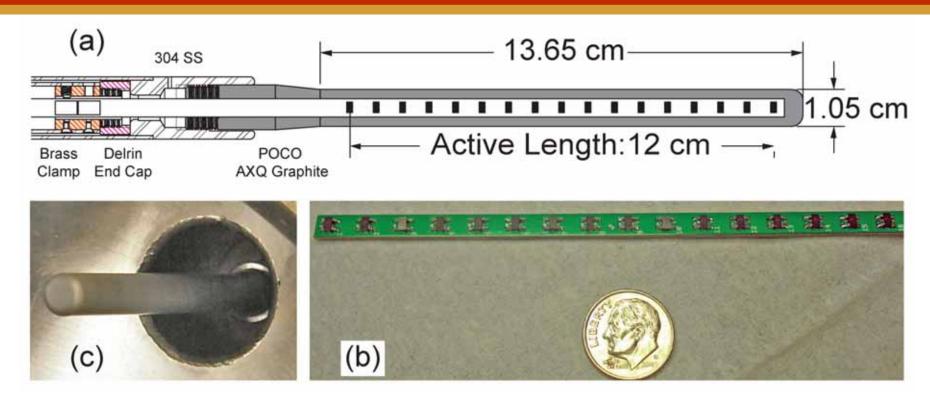

- Significant progress with non-solenoidal startup of ST
 - $I_p \sim 0.17$ MA using helicity injection and outer-PF rampup
 - Using understanding of helicity balance and relaxation current limit to guide hardware and operational changes
 - So far, predicted scalings supported
 - Goal ≈ 0.3 -0.4 MA non-solenoidal I_p to extrapolate to next level/NSTX
 - Outstanding physics questions: λ_{edge} , Z_{inj} , confinement, *etc*.
 - Deploying plasma diagnostics to better understand properties
- Exploration of high I_N , β_t space facilitated by j(r) tools
 - $I_p/I_{TF} > 2$, $I_N > 14$ achieved; extend operation to high I_p , n_e for high β_t
- Holds Promise as a Scalable Non-Inductive Startup Technique
 - Simpler injection system using plasma gun passive electrode combination may be feasible





Some Low-A ST ITER-relevance: Access to Peeling Instability and Conditions to Measure J

- Spherical tokamaks naturally provide strong peeling drive
 - Toroidal field utilization $I_p/I_{tf} \sim j_{\parallel}/B$
- PEGASUS accesses peeling modes
 - Strong j_{\parallel}/B MA/m²-T at
 - Comparable to DIII-D in H-mode
- Machine parameters permit internal edge measurements
 - Short pulse lengths (< 50 ms)
 - Modest $T_e < 200 \text{ eV}$



PEGASUS Hall Probe Deployed to Measure J

- Solid-state InSb Hall sensors
 - Sypris model SH-410
- 16 channels, 7.5 mm radial resolution

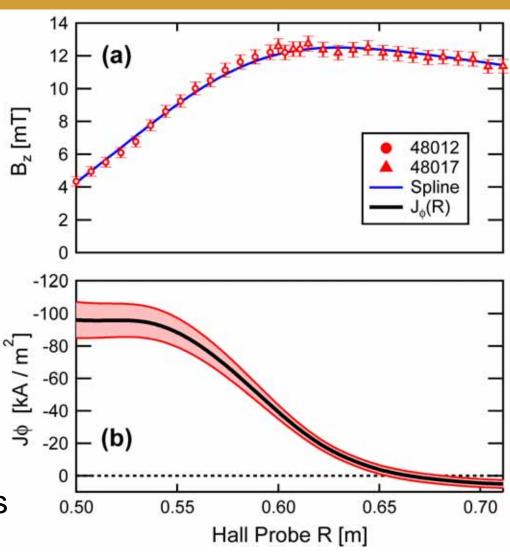
- Slim C armor as low-Z PFC
 - Minimizes plasma perturbation
- 25 kHz bandwidth

J₀(R,t) Calculable Directly from Ampère's Law

$$\mu_0 J_{\phi} = (\nabla \times \mathbf{B})_{\phi} = \frac{\partial B_R}{\partial Z} - \frac{\partial B_Z}{\partial R}$$

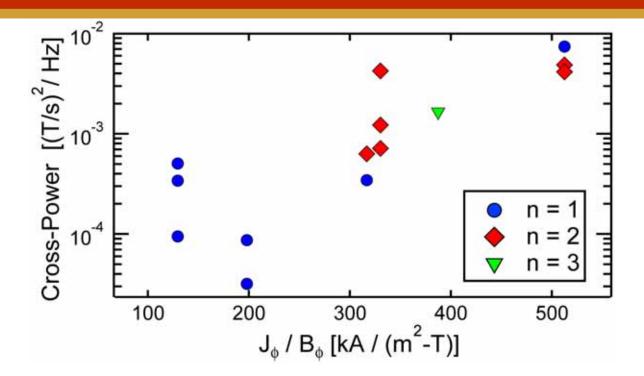
- Simplest test follows from B_R(Z) or B_Z(R) measurements
- Petty* solves for an off-midplane B_Z(R) measurement set and an elliptical plasma cross-section:

$$\mu_0 J_{\phi} = -\frac{B_Z}{\kappa^2 (R - R_0)} \left(1 - \frac{Z^2 R_0}{\kappa^2 R (R - R_0)^2} \right) - \frac{dB_Z}{dR} \left(1 + \frac{Z^2}{\kappa^4 (R - R_0)^2} \right)$$


Does not make assumptions on shape of J(R)

Direct J₀(R) Profiles Obtained in PEGASUS

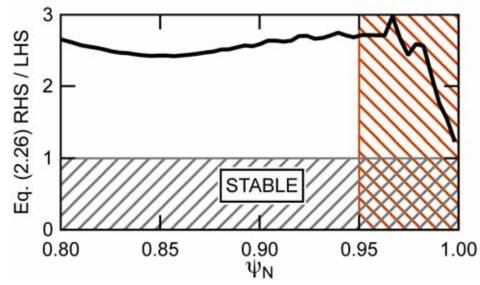
- Straightforward J estimation
 - Obtain Hall Probe $B_z(R,t)$
 - Compute dB_Z/dR using interpolated smoothing spline*
 - Compute $J_{\phi}(R,t)$ given geometry
- Resultant J_φ(R,t) consistent with I_p, MHD evolution
- Radial span extendible with multi-shot averaging
- Higher-order shaping effects negligible within errors

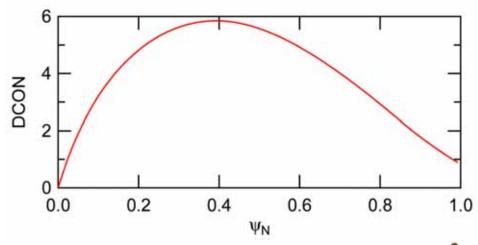


Bongard et al., Phys. Rev. Lett. 107, 035003 (2011)

Peeling MHD Strongly Scales with Theoretical Drive

- Mode helicities estimated from port 8 Mirnov array
 - n < 3 via cross-phase analysis
 - m_{lab} ≥ 10 via radial decay rate
 - $-10 \le m_{lab} / n \le 30 (\psi \downarrow N > 0.9)$

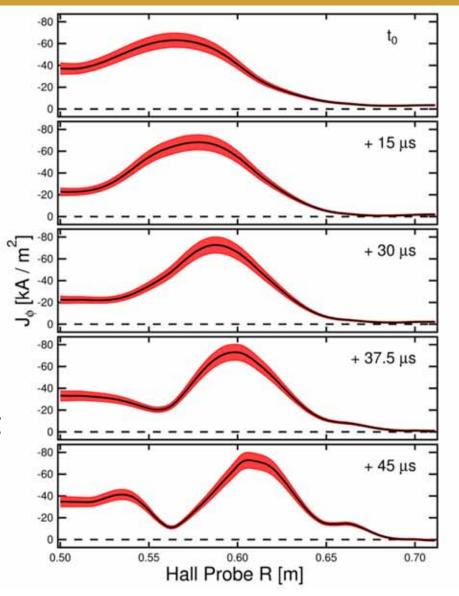

 MHD power spans two orders of magnitude with factor-offive variation in J/B



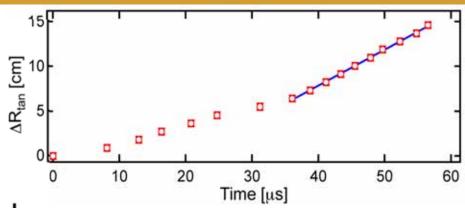
Stability Analysis Confirms Peeling Instability

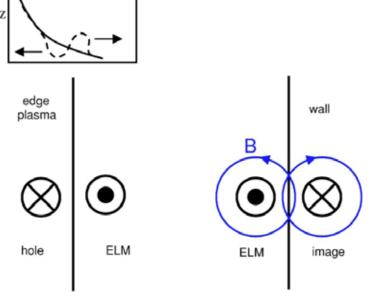
- Analytic peeling criterion computed from Hallconstrained equilibrium indicates instability
 - More than factor of two in region of optimal $(1/1\phi)$ constraint
- Free-boundary ideal stability analysis performed with DCON
 - Indicates instability to m/n = 19/1 external kink
- Both methods agree with experiment

Bongard et al., Phys. Rev. Lett. 107, 035003 (2011)



J_{edge} Dynamics Measured on ELM Timescales


- J_{edge} resolved during peeling filament generation
- Propagating filament forms from initial "current-hole" J_{edge} perturbation
 - Validates formation mechanism
 hypothesized by EM blob transport
 theory
- Filament carries toroidal current
 I_f ~ 100–220 A
 - Comparable to MAST ELM estimates
 - $I_f < 0.2 \% of I_p$



Filament Radial Motion Qualitatively Consistent with Electromagnetic Blob Transport

- Trajectory of detached filament tracked with 275 kHz imaging
 - Radially accelerates, followed by constant velocity motion

- Bongard *et al.*, Phys. Rev. Lett. **107**, 035003 (2011)
- Magnetostatic repulsion* plausibly contributes to dynamics
 - Current-hole $\mathbf{J} \times \mathbf{B}$ drives aR
 - Transition at ~ 35 μs comparable to healing time of current-hole
- Measured VR comparable to available EM blob models**
 - $VR \sim 4 \text{ km/s}$; $VR,IB \sim 8 \text{ km/s}$
 - Agrees to O(1) accuracy of theory

*: Myra, Phys. Plasmas 14, 102314 (2007)

Peeling Mode / ELM Conclusions

- Direct measurements of J_{edge} conducted with Hall probe
 - Direct analysis, equilibrium reconstruction
 - J_{edge} controllable with dI_p/dt
- Characteristics of Peeling Modes Consistent with Theory
 - Macroscopic features: Low-n, high-m external kink
 - Onset consistent with ideal MHD, analytic peeling stability theories
 - Observed MHD scales with measured J/B peeling drive
 - Coherent, propagating filaments
- J_{edge} dynamics supports current-hole & EM blob hypotheses
 - Nonlinear filaments generated from current-hole J_{edge} perturbation
 - Transient magnetostatic repulsion
 - Constant-V_R propagation in agreement with available EM blob theory

HI Conclusion: High-I_p Non-Solenoidal Startup via Point-Source Helicity Injection Looks Promising

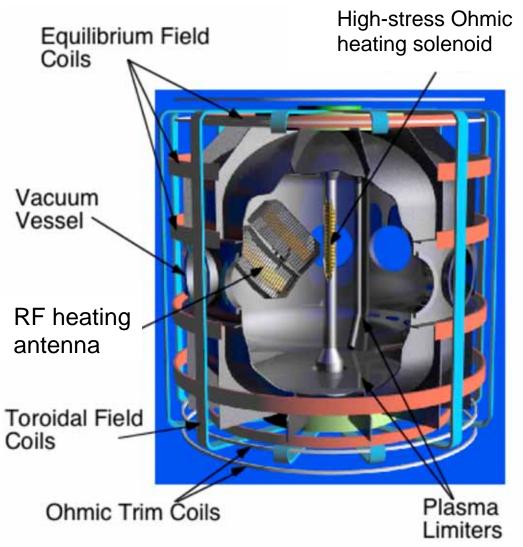
- Significant progress with non-solenoidal startup of ST
 - $I_p \sim 0.17$ MA using helicity injection and outer-PF rampup
 - Using understanding of helicity balance and relaxation current limit to guide hardware and operational changes
 - So far, predicted scalings supported
 - Goal ≈ 0.3 -0.4 MA non-solenoidal I_p to extrapolate to next level/NSTX
 - Outstanding physics questions: λ_{edge} , Z_{inj} , confinement, *etc*.
 - Deploying plasma diagnostics to better understand properties
- Exploration of high I_N , β_t space facilitated by j(r) tools
 - $I_p/I_{TF} > 2$, $I_N > 14$ achieved; extend operation to high I_p , n_e for high β_t
- Holds Promise as a Scalable Non-Inductive Startup Technique
 - Simpler injection system using plasma gun passive electrode combination may be feasible

Plasma Startup via Local Helicity Injection and Stability Studies at NearUnity Aspect Ratio in the Pegasus Experiment

R.J. Fonck, J.L. Barr, M.W. Bongard, M.G. Burke, E.T. Hinson, A.J. Redd, N. Schoenberg, D.J. Schlossberg, K.E. Thome

The Joint Meeting of 5th IAEA Technical Meeting on Spherical Tori

16th International Workshop on Spherical Torus (ISTW2011)


2011 US-Japan Workshop on ST Plasma

National Institute for Fusion Science, Toki, Japan September 27-30, 2011

PEGASUS is a Compact Ultralow-A ST

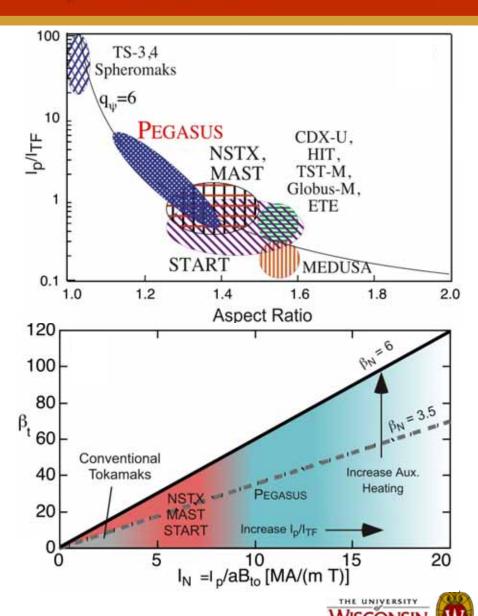
Experimental	l Parameters ∕
<u>Parameter</u>	To Date
A	1.15 - 1.3
R(m)	0.2 - 0.45
$I_{p}(MA)$	≤ .22
I_{N}^{r} (MA/m-T)	6 - 12
l_i	0.2 - 0.5
κ	1.4 - 3.0
$\tau_{\rm shot}$ (s)	\leq 0.025
$\beta_{\mathrm{T}}\left(\% ight)$	≤ 25
$\setminus P_{HHFW}(MW)$	0.2

PEGASUS Mission: Physics of Low A \rightarrow 1

University-scale, Low-A ST

 $-R_0 \le 0.45 \text{ m}, \text{ a} \sim 0.40 \text{ m}$

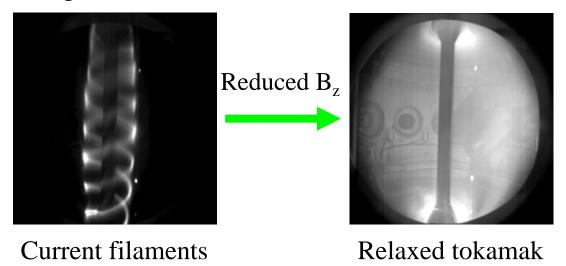
Physics of High I_p/I_{TF}


- Expand operating space of the ST
- Study high β_T plasmas as $A \rightarrow 1$

Non-solenoidal startup

- Point-source helicity injection
- Helicity injection discharges couple to other current drive methods

Peeling-mode studies


• Experimental tests of peeling-ballooning theory (ELM, ITER)

Local Plasma Current Sources + Helical Vacuum Field Give Simple DC Helicity Injection Scheme

- Current is injected into the existing helical magnetic field
- High I_{ini} & modest B ⇒ filaments merge into current sheet
- High I_{inj} & low B \Rightarrow current-driven B_{θ} overwhelms vacuum B_z
 - Relaxation via MHD activity to tokamak-like Taylor state w/ high toroidal current multiplication

• Technical attractiveness: can remove sources and anode after startup

DC Helicity Injection Startup on PEGASUS Utilizes Localized Washer-Gun Current Sources

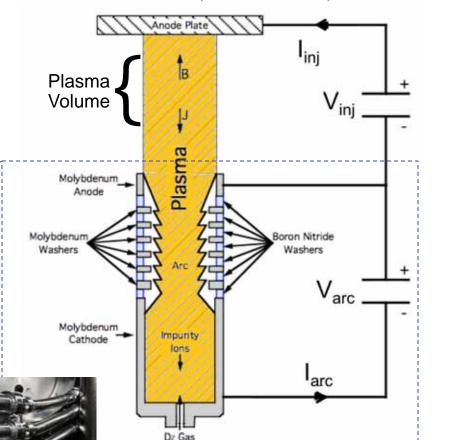
Plasma gun(s) biased relative to anode:

Helicity injection rate:

$$\dot{K}_{inj} = 2V_{inj}B_NA_{inj}$$

 V_{ini} - injector voltage

 B_N - normal B field at gun aperture


3 plasma guns

A_{ini} - injector area

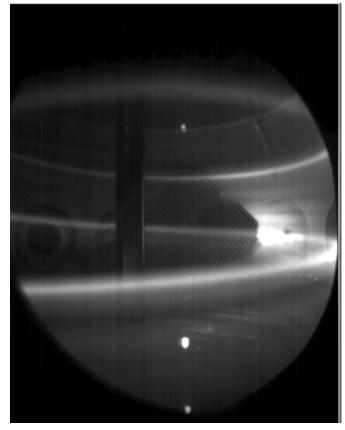
Anode

Plasma

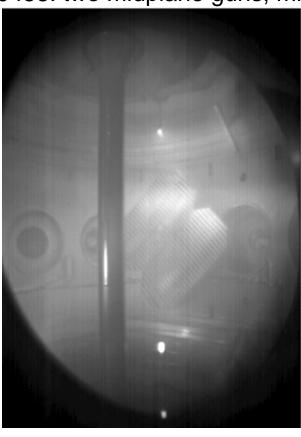
streams

Simplified illustration of a plasma gun for helicity injection

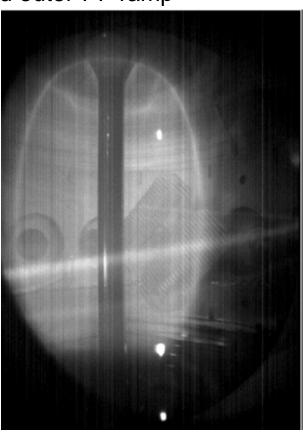
(not to scale)


Midplane Injection

WISCONSIN MADISON



Evolution of midplane-gun-driven plasma


PEGASUS shot #40458: two midplane guns, mild outer-PF ramp

t=21.1 ms, I_p=2-3 kA Filaments only

t=28.8 ms, I_p=42 kA Driven diffuse plasma

t=30.6 ms, I_p=37 kA Guns off, Decaying

Taylor Relaxation Criteria Sets the Maximum $\mathsf{I}_{\scriptscriptstyle \mathrm{D}}$ for a Given Magnetic Geometry

Helicity balance in a tokamak geometry:

$$\frac{dK}{dt} = -2\int_{V} \eta \mathbf{J} \cdot \mathbf{B} \, d^{3}x - 2\frac{\partial \psi}{\partial t} \Psi - 2\int_{A} \Phi \mathbf{B} \cdot d\mathbf{s} \qquad \Longrightarrow \qquad I_{p} \leq \frac{A_{p}}{2\pi R_{o} \langle n \rangle} \left(V_{ind} + V_{eff} \right)$$

$$I_{p} \leq \frac{A_{p}}{2\pi R_{0} \langle \eta \rangle} \left(V_{ind} + V_{eff} \right)$$

- Helicity injection can be expressed as an effective loop voltage
- I_p limit depends on the scaling of plasma confinement via the η term

$$V_{\it eff} pprox rac{A_{\it inj} B_{\phi\,,\it inj}}{\Psi_{\it T}} V_{\it bias}$$

Taylor relaxation of a force-free equilibrium:

$$\nabla \times B = \mu_0 J = \lambda B$$

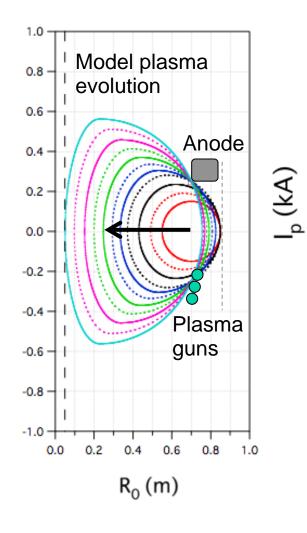
$$\lambda_p \leq \lambda_{edge} \longrightarrow \frac{\mu_0 I_p}{\Psi_T} \leq \frac{\mu_0 I_{inj}}{2\pi R_{inj} w B_{\theta, inj}} \longrightarrow I_p \leq \left[\frac{C_p}{2\pi R_{inj} \mu_0} \frac{\Psi_T I_{inj}}{w} \right]^{1/2}$$

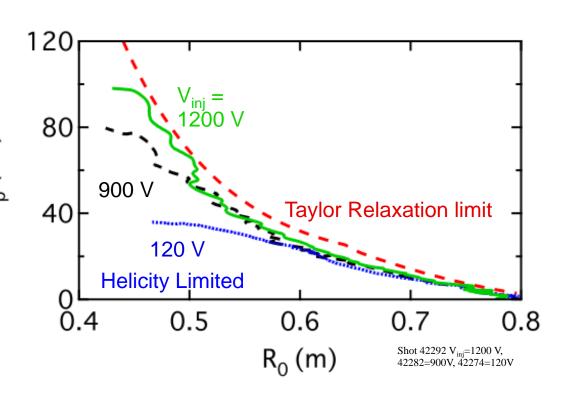
Assumptions:

- Driven edge current mixes uniformly in SOL
- Edge fields average to tokamak-like structure

A_n Plasma area

C_p Plasma circumference

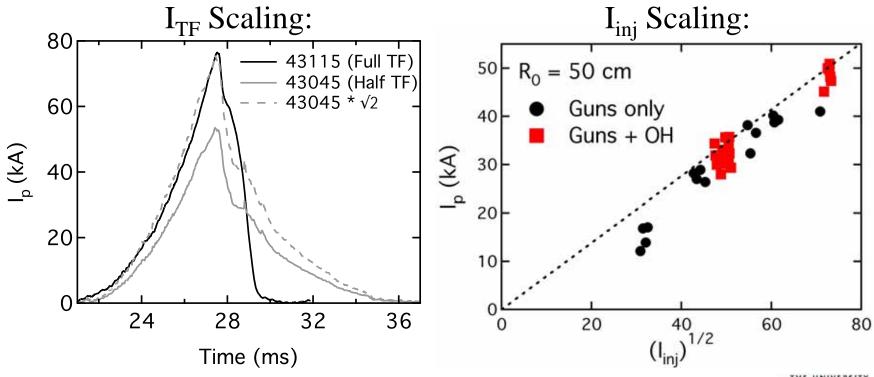

 Ψ_T Plasma toroidal flux


w Edge current channel width

Achieving the Maximum Ip at the Taylor Limit Requires Sufficient Helicity Injection Input Rate

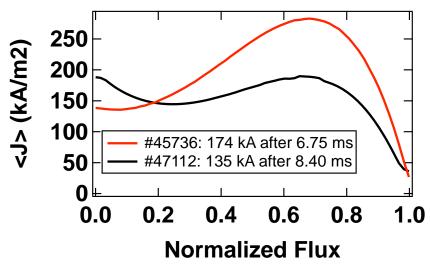
- Helicity input rate, and effective net volt-seconds, increases as V_{ini} increases
- Sufficient net V-sec needed to reach Taylor relaxation limit

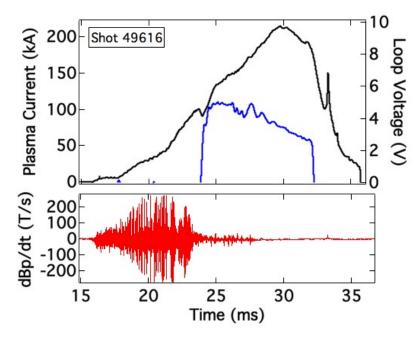
THE UNIVERSITY



Experiments Confirm Relaxation Limit Scalings with I_{TF} and I_{ini}

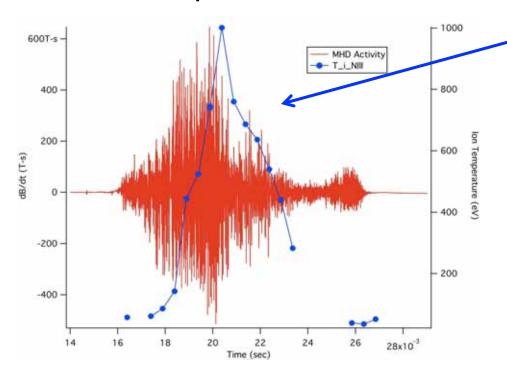
The relaxation limit I_p scales with:

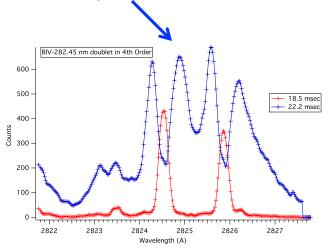

$$I_p \propto \left[\frac{I_{TF} I_{inj}}{w} \right]^{1/2}$$


Experimental plasma current limits follow these scalings:

Slowly-evolving Gun-driven Plasmas Hand Off Most Efficiently to Ohmic Drive

- Poloidal flux generated by helicity injection is equivalent to that generated by Ohmic Drive
 - $I_{total} = I_{HI} + I_{OH}$
- Excessive skin current => poor coupling to OH drive
- Slowly evolving: ~ flat j(r) (black)
 - Smooth handoff to Ohmic inductive drive (j(R) profiles from external-only equilibrium reconstructions; $l_i < 0.3$)
- Rapidly evolving: ~ hollow, strong skin j(r) (red)
 - Does not hand off efficiently to Ohmic drive

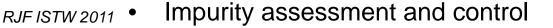



Initial Spectroscopy Measurements Suggest Energetic Ions

 Spectroscopic T_i suggest high ion energies during reconnection period

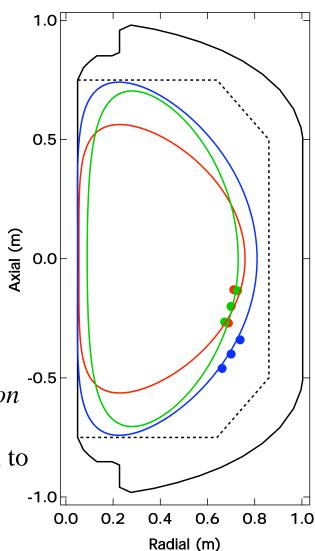
Doppler T_i from radial view

Complex multi-line structures from tangential view


- However, situation is much more complex if viewed toroidally
 - Need improved time-resolution and spatial scans

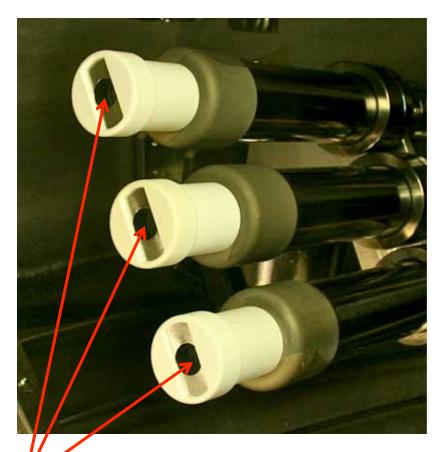
Several Issues to Address for a Predictive Model

- Extension to higher current, longer pulse
 - Verify limit scalings
 - Discharge evolution for long growth phase
 - Test confinement properties, especially $T_e(r,t)$
 - Helicity dissipation scaling model
- Optimal gun-electrode configuration
- Increased helicity injection rate
 - Test regime where helicity drive dominates PF induction for growth
 - Active guns vs. passive electrode approach for long-pulse growth
- Injected current source impedance model
 - What sets helicity injection rate?
- Edge j(r) measurements and λ(ψ,t)
 - Physics of ultimate relaxation limits
 - Current transport: MHD behavior



Gun-Electrode Geometry: PF Induction, Plasma Size, and Null Formation

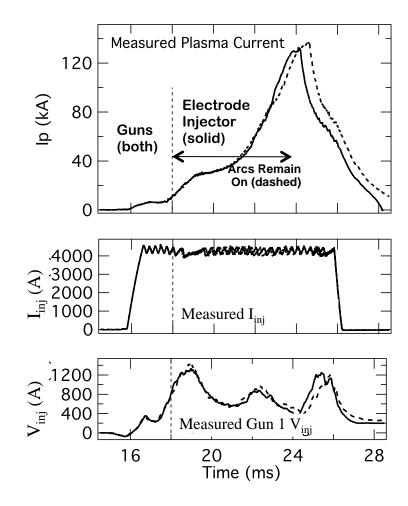
- Original: array was nearly vertical (red):
 - J_{edge} width w scaled with # of guns
 - Maximum $I_p = 0.11$ MA.
- Aligned gun array tilt (green):
 - Maximum $I_p = 0.17$ MA.
 - 3-fold reduction in w., consistent with changing the projected width at midplane.
- Maximize plasma size: array moved further away from midplane (blue):
 - Maximum $I_p \sim 0.13 \text{ MA}$
 - Larger startup plasma = reduced PF induction
 - Poorer poloidal field null formed by current streams = more difficult to induce relaxation to tokamak state
- Tight gun-anode geometry preferred



Active Gun / Passive Electrode Assembly Points to Simpler, Higher I_p Operation

- Potential for much higher I_{inj} without need for either more plasma guns or larger guns.
- Helicity injection physics is agnostic to the exact source of the edge charge carriers.
- Passive electrodes allow arbitrary shaping:
 - Can optimize both helicity input (large cross-sectional area)
 and the Taylor limit on I_p (narrow in radial direction)

Plasma Guns with Integrated Slotted Electrodes

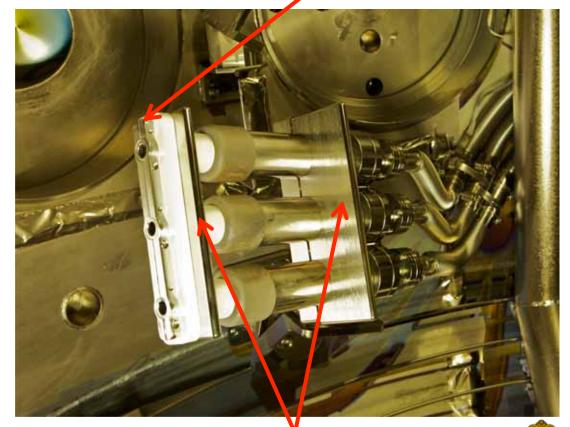

Initial Tests of Gun/Electrode Helicity Injection System Are Promising

Operations use two steps:

- 1. Form initial tokamak-like state with minimal active arc gun
- 2. Grow to much larger I_p with passive electrodes fed by electrode charge carriers induced and moderated by tokamak edge plasma.

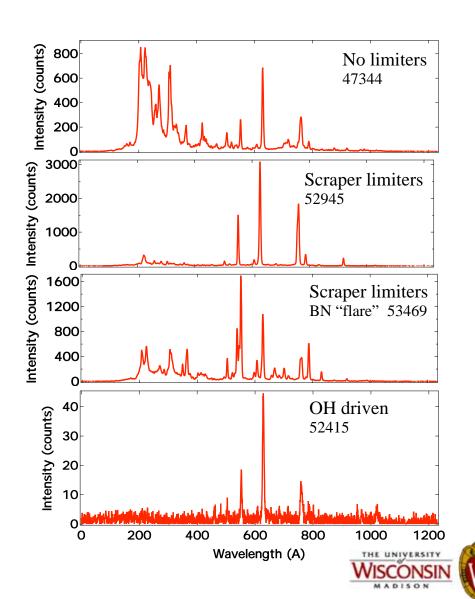
First tests are promising

- Arc current off after relaxation and formation of tokamak-like state
- I_p rise is virtually the *same*, whether arc discharge or passive electrode provide the charge carriers



Integrated Arc Gun – Passive Electrode Experiments Begun

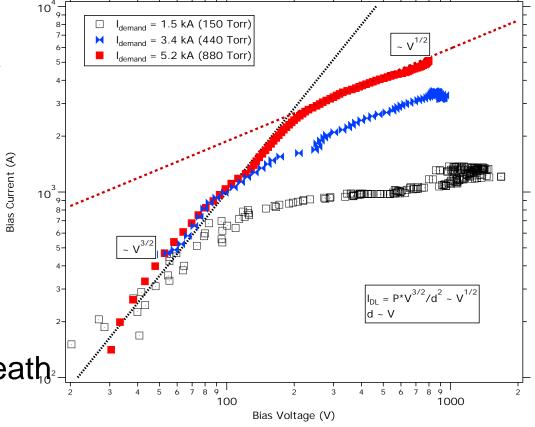
- New gun-electrode assembly has has extended electrode coupled to arc gun exit cathodes
 - Offers 5-times increase in helicity injection rate
- Integrated scraper limiters to protect assembly and control local edge density
 - Gas-puff control of $V_{\text{bias}} \sim V_{\text{loop, effective}}$



Local Limiters Reduce N to Negligible Levels in Well-behaved Injection Cases

- N dominant impurity with unprotected gun assembly
 - 1st estimates of impurity content via bolometer measures
 - $Z_{eff} \sim 2.2$. +/- 0.8 during injection; ≤ 1.4 after injection
 - Mainly N; $n_e \sim 5 \times 10^{18} \text{ m}^{-3}$ to 2 $\times 10^{19} \text{ m}^{-3}$
- Local scraper limiters much reduce N, O remains
- Bursts of N still evident with flare at BN surface
- Ohmic-only reference plasma very clean
 - Zeff ≤ 1.2

Source Impedance Appears to be Governed by Sheath Physics

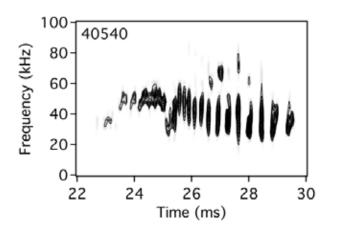

 Model evolving for source impedance ~ helicity injection rate

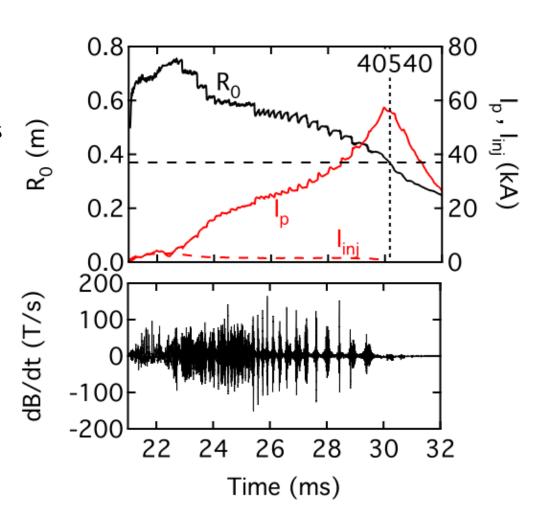
- Predicative model requires edge density measurements
- Initiation phase: vacuum space charge limitation

$$- I_{\text{bias}} \sim V^{3/2} / d^2$$

 High I_{bias} drive phase: expanding double layer sheath

$$- d^2 \sim V => I_{\text{bias}} \sim V^{1/2}$$

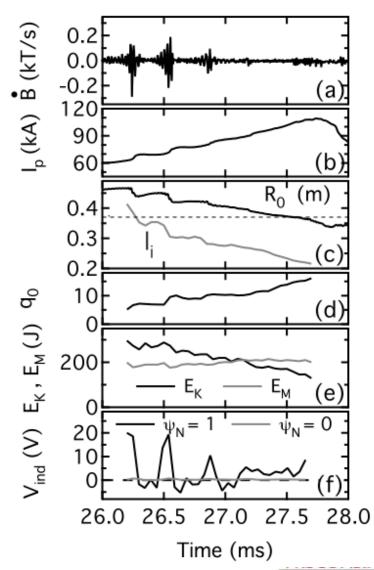




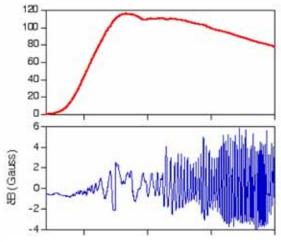
Intermittent 20 - 60 kHz n = 1 mode observed with strong edge current drive

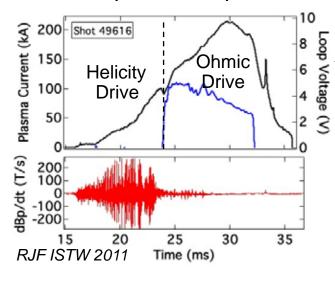
Bursts of n = 1 magnetic oscillations

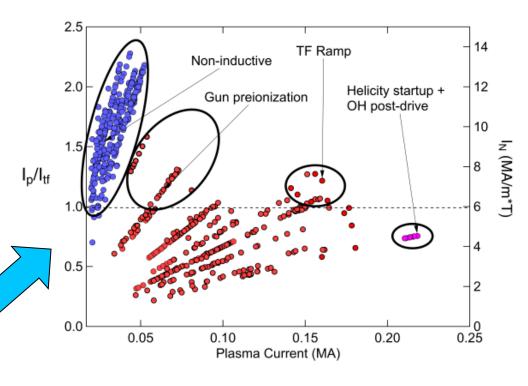
- Observed when plasma is coupled to edge current drive
- Different in nature from inboard current injection experiments



The magnetic topology quickly changes with each burst of MHD activity


- Each burst typically ~ 0.1 ms
- With each burst...
 - I_i decreases → I_p increases
 - − R_O decreases → plasma expands
 - $B_{\phi O}$ increases → q_O increases
 - Slight drop in E_k and E_m
 - Very little change in poloidal flux at plasma edge
 - Rapid decrease in the total trapped poloidal flux




Current Drive Tools Providing Access to High Field Utilization Regime

OH only = large 2/1 modes limit I_p

HI startup = MHD quiescent

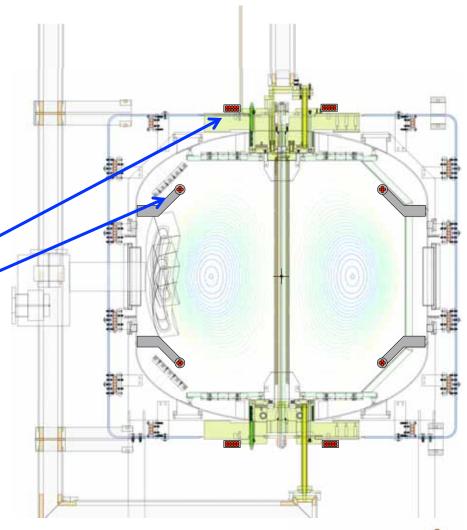
- Helicity injection startup and Ohmic sustainment provides MHD-stable profiles at $I_p/I_{TF} < 1$
- Need to extend to higher I_p , then to low I_{TF} for high I_N and high β_T as $A{\approx}1$

Medium-Term Upgrades Will Allow Further Tests of Point-Source Helicity Injection

• Gun-electrode Evolution

- Passive electrode material variations
 - · C electrode being installed
- Separate plasma gun and electrode

Power Supplies, Heating

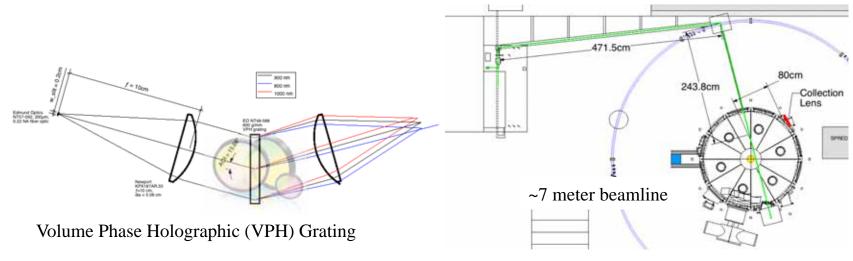

- New helicity injection power: 2 kV, 15 kA
- Double TF current: Taylor limit increase
- Commission HHFW system: electron heating

Expanded PF Coil Set and control

- Internal coils for radial position control
- New external divertor coils
- Implement GA Plasma Control System

Diagnostic Additions

- Multipoint Thomson Scattering
- High-speed $T_i(r,t)$
 - Anomalous reconnection heating

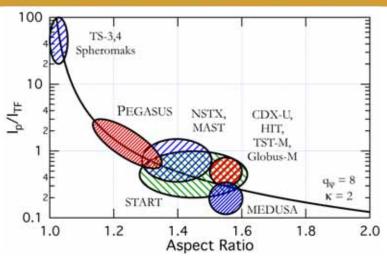


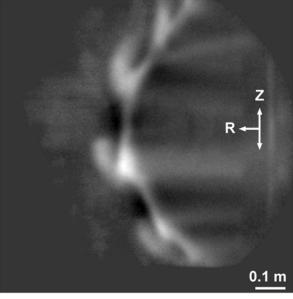
Thomson Scattering system uses new technologies for visible wavelength system

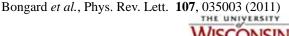
- Frequency doubled Nd:YAG laser provides ~10¹⁸ photons
- For typical PEGASUS plasma, $n_{\text{scattered}} \sim 10^4 \text{ photons}$
- VPH grating efficiency >85% for $\lambda_{inc} = 532 632$ nm
- Gen III image intensifiers ~50% efficient in visible region
- ~ 6 ns ICCD gating provides easy detector technology

Laser Specifications	Value
Output Energy at 532 nm	≥ 2000 mJ
Beam diameter at head	12 mm
Beam diameter at waist	3 mm
Pointing stability	≤ 50 µrad
Divergence	≤ 0.5 mrad
Repetition Rate	≤ 10 Hz
Pulse length	≥ 10 ns

HI Conclusion: High-I_p Non-Solenoidal Startup via Point-Source Helicity Injection Looks Promising

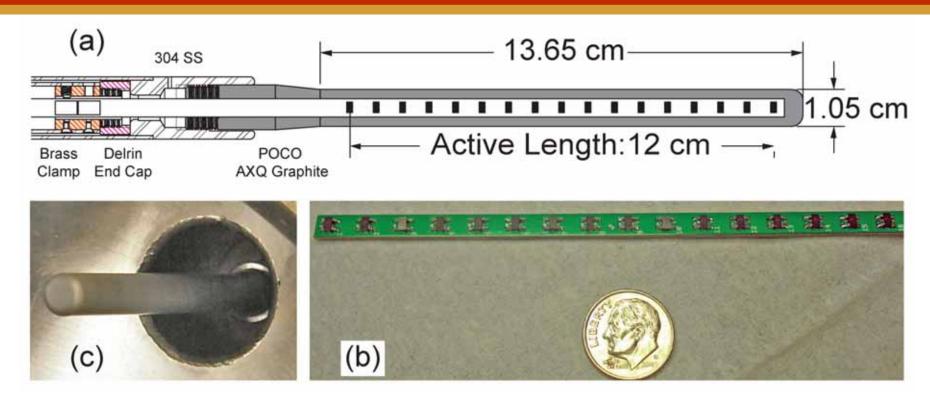

- Significant progress with non-solenoidal startup of ST
 - $I_p \sim 0.17$ MA using helicity injection and outer-PF rampup
 - Using understanding of helicity balance and relaxation current limit to guide hardware and operational changes
 - So far, predicted scalings supported
 - Goal ≈ 0.3 -0.4 MA non-solenoidal I_p to extrapolate to next level/NSTX
 - Outstanding physics questions: λ_{edge} , Z_{inj} , confinement, *etc*.
 - Deploying plasma diagnostics to better understand properties
- Exploration of high I_N , β_t space facilitated by j(r) tools
 - $I_p/I_{TF} > 2$, $I_N > 14$ achieved; extend operation to high I_p , n_e for high β_t
- Holds Promise as a Scalable Non-Inductive Startup Technique
 - Simpler injection system using plasma gun passive electrode combination may be feasible





Some Low-A ST ITER-relevance: Access to Peeling Instability and Conditions to Measure J

- Spherical tokamaks naturally provide strong peeling drive
 - Toroidal field utilization $I_p/I_{tf} \sim j_{\parallel}/B$
- PEGASUS accesses peeling modes
 - Strong j_{\parallel}/B MA/m²-T at
 - Comparable to DIII-D in H-mode
- Machine parameters permit internal edge measurements
 - Short pulse lengths (< 50 ms)
 - Modest $T_e < 200 \text{ eV}$



PEGASUS Hall Probe Deployed to Measure J

- Solid-state InSb Hall sensors
 - Sypris model SH-410
- 16 channels, 7.5 mm radial resolution

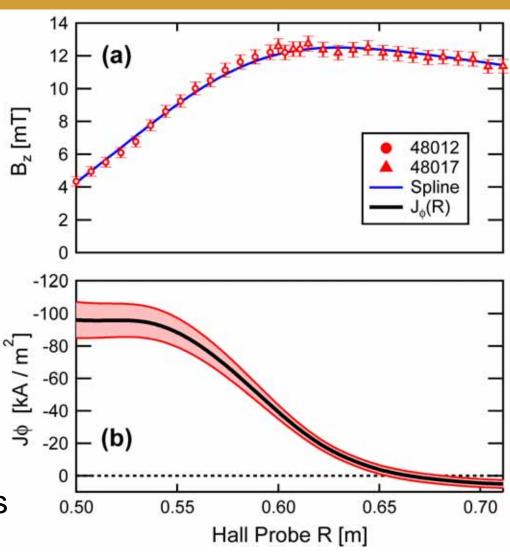
- Slim C armor as low-Z PFC
 - Minimizes plasma perturbation
- 25 kHz bandwidth

J₀(R,t) Calculable Directly from Ampère's Law

$$\mu_0 J_{\phi} = (\nabla \times \mathbf{B})_{\phi} = \frac{\partial B_R}{\partial Z} - \frac{\partial B_Z}{\partial R}$$

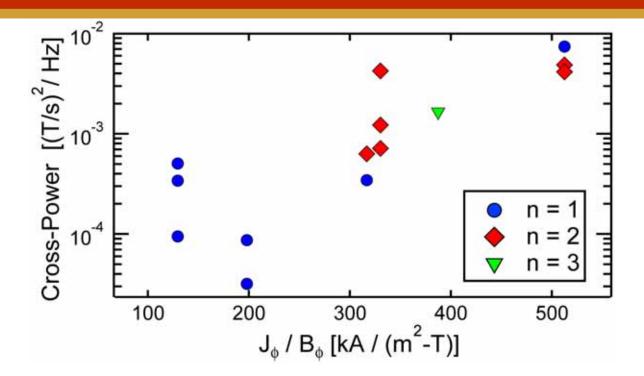
- Simplest test follows from B_R(Z) or B_Z(R) measurements
- Petty* solves for an off-midplane B_Z(R) measurement set and an elliptical plasma cross-section:

$$\mu_0 J_{\phi} = -\frac{B_Z}{\kappa^2 (R - R_0)} \left(1 - \frac{Z^2 R_0}{\kappa^2 R (R - R_0)^2} \right) - \frac{dB_Z}{dR} \left(1 + \frac{Z^2}{\kappa^4 (R - R_0)^2} \right)$$


Does not make assumptions on shape of J(R)

Direct J₀(R) Profiles Obtained in PEGASUS

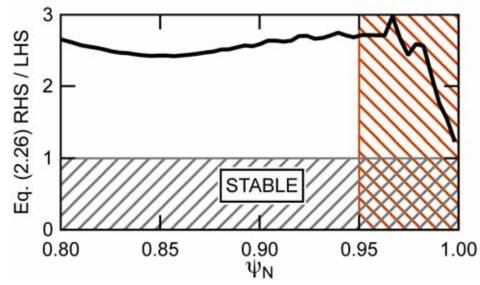
- Straightforward J estimation
 - Obtain Hall Probe $B_z(R,t)$
 - Compute dB_Z/dR using interpolated smoothing spline*
 - Compute $J_{\phi}(R,t)$ given geometry
- Resultant J_φ(R,t) consistent with I_p, MHD evolution
- Radial span extendible with multi-shot averaging
- Higher-order shaping effects negligible within errors

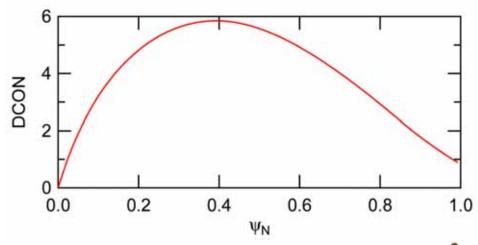


Bongard et al., Phys. Rev. Lett. 107, 035003 (2011)

Peeling MHD Strongly Scales with Theoretical Drive

- Mode helicities estimated from port 8 Mirnov array
 - n < 3 via cross-phase analysis
 - m_{lab} ≥ 10 via radial decay rate
 - $-10 \le m_{lab} / n \le 30 (\psi \downarrow N > 0.9)$

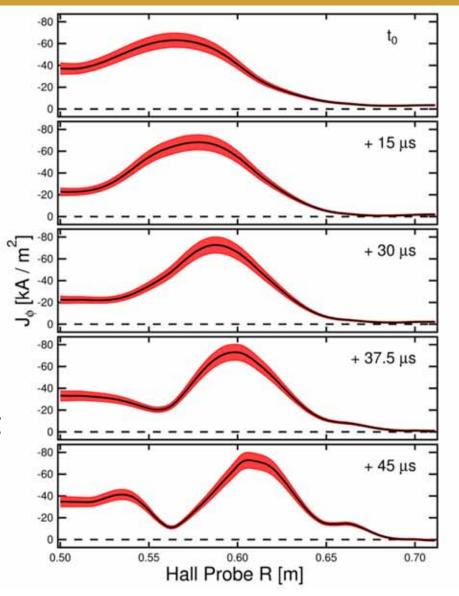

 MHD power spans two orders of magnitude with factor-offive variation in J/B



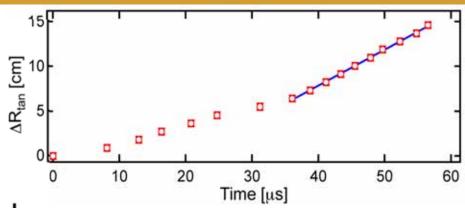
Stability Analysis Confirms Peeling Instability

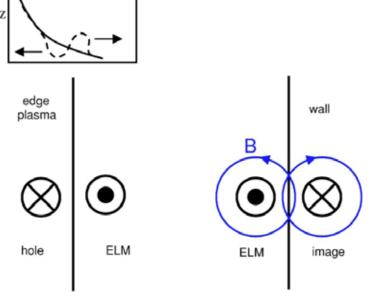
- Analytic peeling criterion computed from Hallconstrained equilibrium indicates instability
 - More than factor of two in region of optimal $(1/1\phi)$ constraint
- Free-boundary ideal stability analysis performed with DCON
 - Indicates instability to m/n = 19/1 external kink
- Both methods agree with experiment

Bongard et al., Phys. Rev. Lett. 107, 035003 (2011)



J_{edge} Dynamics Measured on ELM Timescales


- J_{edge} resolved during peeling filament generation
- Propagating filament forms from initial "current-hole" J_{edge} perturbation
 - Validates formation mechanism
 hypothesized by EM blob transport
 theory
- Filament carries toroidal current
 I_f ~ 100–220 A
 - Comparable to MAST ELM estimates
 - $I_f < 0.2 \% of I_p$



Filament Radial Motion Qualitatively Consistent with Electromagnetic Blob Transport

- Trajectory of detached filament tracked with 275 kHz imaging
 - Radially accelerates, followed by constant velocity motion

- Bongard *et al.*, Phys. Rev. Lett. **107**, 035003 (2011)
- Magnetostatic repulsion* plausibly contributes to dynamics
 - Current-hole $\mathbf{J} \times \mathbf{B}$ drives aR
 - Transition at ~ 35 μs comparable to healing time of current-hole
- Measured VR comparable to available EM blob models**
 - $VR \sim 4 \text{ km/s}$; $VR,IB \sim 8 \text{ km/s}$
 - Agrees to O(1) accuracy of theory

*: Myra, Phys. Plasmas 14, 102314 (2007)

Peeling Mode / ELM Conclusions

- Direct measurements of J_{edge} conducted with Hall probe
 - Direct analysis, equilibrium reconstruction
 - J_{edge} controllable with dI_p/dt
- Characteristics of Peeling Modes Consistent with Theory
 - Macroscopic features: Low-n, high-m external kink
 - Onset consistent with ideal MHD, analytic peeling stability theories
 - Observed MHD scales with measured J/B peeling drive
 - Coherent, propagating filaments
- J_{edge} dynamics supports current-hole & EM blob hypotheses
 - Nonlinear filaments generated from current-hole J_{edge} perturbation
 - Transient magnetostatic repulsion
 - Constant-V_R propagation in agreement with available EM blob theory

HI Conclusion: High-I_p Non-Solenoidal Startup via Point-Source Helicity Injection Looks Promising

- Significant progress with non-solenoidal startup of ST
 - $I_p \sim 0.17$ MA using helicity injection and outer-PF rampup
 - Using understanding of helicity balance and relaxation current limit to guide hardware and operational changes
 - So far, predicted scalings supported
 - Goal ≈ 0.3 -0.4 MA non-solenoidal I_p to extrapolate to next level/NSTX
 - Outstanding physics questions: λ_{edge} , Z_{inj} , confinement, *etc*.
 - Deploying plasma diagnostics to better understand properties
- Exploration of high I_N , β_t space facilitated by j(r) tools
 - $I_p/I_{TF} > 2$, $I_N > 14$ achieved; extend operation to high I_p , n_e for high β_t
- Holds Promise as a Scalable Non-Inductive Startup Technique
 - Simpler injection system using plasma gun passive electrode combination may be feasible

