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Outline

« NSTX and FNSF missions

« NSTX transport and stability results
« NSTX Upgrade performance capabilities
« ST Pilot Plant studies

¢ Summary
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NSTX Mission Elements

« Advance ST as candidate for Fusion ST-FNSF

Nuclear Science Facility (FNSF)

» Develop solutions for
plasma-material interface

« Advance toroidal confinement
physics for ITER and beyond

* Develop ST as fusion energy system
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Mission of ST-FNSF

(See presentation by M. Peng)

* Provide a continuous fusion nuclear
environment of copious neutrons to

develop an experimental database on:

— Nuclear-nonnuclear coupling phenomena in materials
iIn components for plasma-material interactions

— Tritium fuel cycle
— Power extraction

ST-FNSF

« Complement ITER, prepare for

. Low-aspect-ratio
component test facility (CTF): P

“spherical” tokamak

— Low Q (= 3): 0.3XITER :

— Neutron flux <2 MW/m?: 3 x (ST)is mOSt compact
— Fluence = 1 MW-yr/m2: 5 X embodiment of FNSF
— thuse S 2 WKS! 1000 x

— Duty factor = 10%: 3 X
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High-Priority Research Areas for ST-FNSF

ReNeW Thrust 16 (2009): “Develop the ST to advance fusion nuclear science”

1. Develop MA-level plasma current formation and ramp-up

2. Advance innovative magnetic geometries, first wall solutions

3. Understand ST confinement and stability at fusion-relevant parameters

4. Develop stability control techniques for long-pulse, disruption-free ops

5. Sustain current, control profiles with beams, waves, pumping, fueling

6.Develop normally-conducting radiation-tolerant magnets for ST applications

7. Extend ST performance to near-burning-plasma conditions

This talk will focus on how NSTX and NSTX Upgrade
address the ST-FNSF physics research areas 3, 4, 7 above
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NSTX is continuing to explore the favorable
collisionality scaling (ec 1/v..) of ST energy confinement
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Expts also show weak B scaling: ¢, ~ B%1% 02> (no Li, with Li)
— Important for high-g ST and AT scenarios
— Beta scaling strong function of ELM character — Type Il ELMs - strong degradation
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New NSTX turbulence simulations are advancing
the understanding of ST energy confinement

* Non-linear gyrokinetic turbulence simulations of
micro-tearing instabilities predict tz o 1/y, o< 1/v *

* Predominantly electromagnetic

turbulence — result of high 3

« Candidate explanation for ST
confinement scaling observed 4" L
on NSTX and MAST ;

‘ W. Guttenfelder,
PRL 106, 155004 (2011)

Lower v* accessible in Upgrade
will clarify roles of micro-tearing
vs. ETG, TEM in ST e-transport
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Reversed shear suppresses mode growth even at
supercritical ETG gradients during e-ITBs

@ Intermittent, short duration bursts of ETG observed during RS phase
. Average ETG mode amplitude low, T, gradient well above ETG critical
. GYRO simulations indicate non-linear up-shift of critical ETG gradient

@ A series of large amplitude, closely spaced in time ETG bursts collapse Te profile
. Magnetic shear becomes zero/positive due to anomalous current redistribution

@ T, profile can only be reheated to ETG critical gradient at zero shear
. ETG mode amplitude grows to a moderate continuous level

H.Y. Yuh,
PRL 106, 055003 (2011)
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Large density gradient induced by an ELM event used
to probe high-k turbulence and electron transport

ELM event ) )
High-k measurement region

Shot=140620

—t=498 ms
-==t=531ms

After the ELM event:

— A factor of 4 increase in
density gradient

— 60% increase in electron
temperature gradient

— 60 % decrease inion
temperature gradient

— =498 ms
-==t=531Tms

0
100 110 120 130

R (cm)

Y. Ren, PRL 106, 165005 (2011)

140

— 40% increase in T,

— Less than 25% variation
in all other equilibrium
guantities

No large global MHD
mode appears before and
right after the ELM event
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Correlation Found between Reduction of Turbulence Spectral
Density and Improvement of Plasma Thermal Confinement

Plasma thermal diffusivity is
decreased by about a factor of 2 after
the ELM event

This increase correlates well with the
decrease of the spectral power of the

« Significant decrease in wavenumber *
spectral power is observed for modes
with longer wavelength, k1 ps < 10

« The spectral power of the large *
wavenumbers, k, ps 2 15, is unaffected
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longer wavelength mode
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New BES commissioned in 2010: observed decrease in
fluctuations at L-H transition from edge to core regions
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NSTX is 15t tokamak to implement advanced resistive wall
mode state-space controller, utilized it to sustain high B~ 6

Full 3-D State reduction (< 20 states)
model - = .,
- RWM :
eigenfunction
(2 phases,
2 states)
(X, %) %,
- Device R, L, mutual inductances truncate
- Instability B field / plasma response State space feedback with 12 states
- Modeled sensor response 12 _ _ — NSTX 140037/140035
osf P MR

« Controller can compensate for K ; / Svorable 7 |

wall currents 047" Unfavorabl¢ feedback phase : | 3 phase |

. . 0.0 i | : B i———

» Including mode-induced current | B NN

> Examined for ITER a0N
 Successful initial experiments g:

» Suppressed disruption due to n 8

=1 applied error field
» Best feedback phase produced 4
long pulse, By = 6.4, B/ I, = 13 Dr:rn

| S.Sabbagh, Columbia Univ. |
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Reduced stability in low |; target plasma as o, reduced, RWM
Instability is approached; stability also reduced at higher A

RWM stability vs. o, (contours of yt,,)
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minimum |, and marginally stable at limit in increased aspect ratio plasmas
RWM onset (I, = 0.49) J. Berkery,
Columbia Univ.
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NSTX is addressing disruption physics for FNSF and ITER

« Example: halo current (HC) dynamics
— HC rotation is a key issue for ITER: mechanical

resonances could cause significant damage % 300
— NSTX studying parametric dependencies of the g
n=1 HC magnitude and rotation dynamics 2 200
—— § Shunt Tiles (< 12) B = 00
gof row X = ' Z o
r > / L1 '§
50} ’ Ig
40? ' = Ok | e 0
g IR
oL . < 500%
2 ®  rotal Aot Rotations < oot
P peTeens S. Gerhardt, PPPL E '1-388
« Other key contributions:
— Current quench database physics
— Divertor heat loading with fast dual-band IR

— Fast and slow n=1 control, and rotation profile [ ¢olumbia
optimization, for avoidance of disruptive MHD [ University

— Future — New disruption mitigation studies:
Optimization of poloidal location of MGl

Univ.
Washington

Contours of halo current flowing
into the lower divertor of NSTX
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NSTX has begun to explore stability impact of higher aspect
ratio and elongation in preparation for Upgrade, next-steps

A=1.45,x=24

A=1.65,x=2.8

Successfully operated at B > 4 for
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In 2009-10, NSTX demonstrated sustained high-elongation
configurations over a range of currents and fields

L L 1.2
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NSTX Upgrade designed to extend NSTX results: 5x longer
pulses, 100% non-inductive, ultimately with q profile control

New center stack for 1T, 2ZMA, 5s

2"dNBI with 5 MW, 5s at larger Ry, gency

Ry/a=1.25-1.3 mmp 1516
Pres_ent %S N_(zw C_S

BT
[Tesla]

“10 20 30 40 50 60 70 80
TPuIse (sec)

2nd NBJ
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= Present NBI
110,120,130cm
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50,60,70cm

o T

PresentNBI  p | 29NBI
- TAN 087 KA TAN °
ool AOKAMWy, 50cm g6 ™ 110cm-

60cm 120cm |

0.4 70cm 4 oaf 130cm
02 N __ N
0.0 I L L ] 0.0 . .

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Normalized minor radius

v* reduced 3-6x, nTt up to 10x higher

Magnet operation at ~1T (vs. 0.55T):

Up to 2x higher NBI current drive efficiency:
Non-inductive ramp-up, sustainment, J(r) control
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Upgrade structural enhancements designed to support high 8
at full I, = 2MA, B=1T: By=5,<land B, =8,1;<0.6

PF5 supply current vs. internal inductance New Umbrella

PF5 supply current (kA)

for 2MA plasma current and |, = 0

NSTX Upgrade

UpperLid

——py=1

—&—fpy=5

NSTX PF:

High [;, high-B, scenarios determine the
maximum vertical field (PF5) current required

0.6

0.8

Internal inductance

Upper & Lower
Umbrella
Reinforcements

Additional PF2
Clamp, PF2/3
Support
Upgrades

New TF Leg
SupportRing

New (additional)
PF4/5 Supports

New Clevis &
Connecting
Rods

New Umbrella

l Lower Lid

New Pedestal

VVFoot
Reinforcement
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Non-inductive ramp-up from ~0.4MA to ~1MA projected
to be possible with new CS + more tangential 2"d NBI

New CS provides higher TF (improves stability), 3-5s needed for J(r) equilibration
More tangential injection provides 3-4x higher CD at low Ip:

— 2Xx higher absorption (40->80%) at low I, = 0.4MA

— 1.5-2x higher current drive efficiency

E,5=100keV, 1,=0.40MA, f,,=0.62

n, = 2.5x10"”m>, T, = 0.83keV
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NSTX Upgrade will bridge the device
and performance gaps toward next-step STs

Fusion Nuclear

NSTX NSTX Upgrade Science Facility ST Pilot Plant
Major Radius R, [m] 0.86 0.94 1.3 2.2
Aspect Ratio = R,/ a >1.3 >1.5 > 1.6 > 1.7
Plasma Current [MA] 1 2 410 10 > 20
Toroidal Field [T] 0.5 1 2-3 2-3
P/R, PIS [MW/m,m?] 10, 0.2* 20, 0.4* 30>60,0.6>1.2 | 40>100,0.3>1
Fusion gain Qpr 0->1-3 0 - 10-20

* Includes 4MW of high-harmonic fast-wave (HHFW) heating power

10{ STFNSF |

T
constant
d,B,p*

NS TX Upgrade

NSTX |

TER-like

*-0.97
Ve

L scaling ~ »
I .
| ~ ;095

—+— Total

—&— Thermal

0.01
Vo ~n. /T2

0.10
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Pilot plant goals, capabilities

 Pilot Plant goal:

Integrate key science and technology capabilities of a fusion
power plant in a next-step R&D facility

« Targeted ultimate capabillities:

— Fusion nuclear S&T development, component testing

» Steady-state operating scenarios
« Neutron wall loading =2 1MW/m?
* Tritium self-sufficiency

— Maintenance scheme applicable to power plant

 Demonstrate methods for fast replacement of in-vessel components

— Net electricity production
 Bridge gap between ITER/CTF and power plant (~1-1.5 GWe)

@ NSTX ST Workshop 2011 — NSTX (Menard)
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Size of ST pilot depends primarily on achievable B

| @ = Pilot design point

9 Ro Png B
1.6m 30MW
2.2m 30MW

8 2.2m 60MW |

ﬂN 7 \I\.\._H—.

6

5 S

2.0 \
1.8 \_\
1.6
1.2
Qeng = 1’ MNin = 0.45
1.0 T T

Higher density favorable for reducing B, and Hgyg (also fast ion fraction)

0.2 0.4 0.6 0.8 1.0

2.2m

cA=1.7=22m/1.3m

* B, = 2.4T, I, = 18-20MA

* Avg. W, =1.9-2.9 MW/m?
e Peak W, = 3-4.5 MW/m?
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ST pilot plant design features

Flared TF rod to reduce power: 150-200MW

Strong shaping for stability, bootstrap current
— Elongation ~3 and triangularity ~ 0.6

DN divertor for power handling
— Avg. heat flux over wetted area = 7MW/m?
— Peak heat flux could be much higher

— May need snowflake, flowing Li, Super-X, radiation...

PF coils in ends of TF rod to produce diverted
high 6 plasma, protect PF coils
— All other PF colls superconducting

Vacuum vessel independent of TF legs
— 10 TF outer legs, ripple < 0.25% at plasma

Conformal blankets to maximize TBR
— Entire blanket structure removable vertically

Shielding for vessel, TF outer legs, PF coils
outside center-stack = lifetime components

Center-stack shielded for 1-2 FPY

Z[m]

NSTX ST Workshop 2011 — NSTX (Menard)
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Engineering design details of ST pilot plant

External structure
supporting a sliding
joint TF system VV located

inside the TF

External structure P
also supports PF
coils, torsional loads

S/C external PF coils
housed in a vacuum
enclosure

Copper divertor
shaping coils
embedded within the
TF centerstack

Felt metal
sliding joint

Leads for TF power supplies
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ST pilot plant employs vertical maintenance with
removable center-stack and blanket components

Blanket modules can
be lifted as unit or as
sub-assemblies

@D NSTX ST Workshop 2011 — NSTX (Menard)
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Summary

« NSTX has achieved significant advancements in the
understanding of confinement, stability, MHD control

« NSTX Upgrade is designed to access:
— Reduced collisionality - relevant to all ST physics areas
— Full non-inductive operation with equilibrated profiles
— Non-inductive ramp-up with NBI current drive
— High beta at full field and current

 Investigating ST pilot-plant configuration as high-
performance next-step for:
— High neutron wall loading
— Demonstrating tritium self-sufficiency
— Electricity break-even
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