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The multi-pulsing scenario of CHI aims to achieve simultaneously a
quasi-steady sustainment and good confinement.

A critical issue for CHI is achieving a good energy confinement.

A new approach of CHI : Multi-pulsing CHI or Repetitive transient CHI

3D MHD simulation

Coaxial Helicity injection (CHI) is an efficient current-drive and start-up method
which was used in many spheromak and ST experiments.
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Multi-pulsing CHl for ST configurations

The multi-pulsing CHI (M-CHI) discharges on SSPX at LLNL were successfully
demonstrated for a high temperature spheromak. (see Ref.[1,2])

• A purpose of this experiment is to explore
characteristics of the M-CHI driven ST.

Application of the M-CHI to ST configurations

• What mechanism of current drive is different
from spheromak ?

• Central open flux column plays an
important role in driving a current.

Flow, Dynamo, Mode structure, etc.

Spheromak
High-q ST
Low-q ST

[1] S. Woodruff, et al. PRL 90, 205002-1 (2004)
[2] E.B. Hooper, PPCF 53, 085008 (2011).



Formation capacitor banks
V = 3-10 kV, C = 0.6 mF
Injection current ： Ig ~ 30 - 60 kA

• HIST plameters

• Power supply system for double-pulse

HIST device and double-pulsing CHI

2nd pulse voltage： Vg ~ 400 V
2nd pulse current： Ig ~ 10-20 kA

R=0.3 m, a=0.24 m , A=1.25
ne=0.5-1 x 10 20 m-3

Te, Ti = 10-40 eV
It< 150 kA,

• TF coil current

• Sustainment capacitor banks
First pulse : V < 900 V, C = 336 mF
Second pulse : V < 900 V, C = 195 mF

High-q ST: q ~ Itf(= ~ 150 kA) / It>1

Spheromak, Low-q ST: q ~ Itf (= 0-30 kA) / It<1

S*=R/li~10 li=(c/wpi)=2~3 cm

he=wcetie=50-200



: unmagnetized

Vi: ion flow, Cs: ion sound velocity, Mi: ion Mach number, Mc: proportionality constant, Te (Ti): electron (ion)
temperature,ge (gi): specific heat ratio for electron (ion), rp: probe radius, ri: Larmor radius (~ 1 cm)

Dynamo-Mach Probe Measurement

: Cs=30 km/s (Te=Ti)

3-axis flows and 3-axis magnetic fields
are simultaneously measured.

Ion Mach Number Mi

Jup upstream rod current

Jdown downstream rod current

Hutchinson model

- Mach probe analysis -



Plasma current

Inner edge Bp

Averaged density

Outer edge Bp

l in OFC

l in Core

Doppler ion temp.

Double pulsed discharge

Single pulsed discharge

By secondly pulsing the MCPG at t =
1.5 or 2.5 ms during the partially
decay phase, total plasma current is
effectively amplified against the
resistive decay. The core current
density is generated due to dynamo.

The sustainment time has increased
up to 6 -8 ms which is longer than
that in the single CHI case.

The edge l in the OFC is larger than
the core l , causing helicity transport.

Double pulsing CHI discharge

Ion Doppler temperature increases
from 20 eV up to 30 eV.

OII

1st pulse 2nd pulse

l = m0It./Yt

(High-q)



Flux and current amplification

Second gun pulse
Time (ms)
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mWb1
.biasp 



0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

0.0 50.0 100.0 150.0 200.0

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

0.0 50.0 100.0 150.0 200.0

n
e

[x
1

0
1

9
m

-3
]

I t
[k

A
]

Itf [kAturns] Itf [kAturns]

Plasma current vs TF coil currentDensity vs TF coil current

It and ne vs Itf for 2nd pulse



Internal magnetic field profiles

Bp(R)

Magnetic axis

Separatrix
OFC

1st pulse 2nd pulse

Bp is enhanced in the OFC.
Magnetic axis moves outwardly.
Jt becomes from a hollow to a peaked profile.

Driven phase Decay phase

M-CHI process

t=2 ms t=6 ms t=7 ms
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Diamagnetic properties of Open Flux Column

The toroidal field Bt in the OFC is decreased from
the vacuum field.

OFC radius ~ Rdiamag

0.12~0.18 m

Separatrix position

Rdiamag

“diamagnetic”
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Generalized Ohm’s law
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MHD dynamo

Two-fluid dynamo effects

# Diamagnetic dynamo term does not
appear explicitly in the parallel mean-
field Ohm’s law
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# Diamagnetic current jdiamagdue to
electron and ion diamagnetic drift
contributes on Hall dynamo term

Diamagnetic dynamo

* Private communication with Dr. K. McCollam

Electron-ion decoupling
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Measurement of three components of fluctuating velocity, current density
and magnetic field at a radial position
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MHD dynamo probe

Hall dynamo probe (50x50x50 mm)
Incorporating Rogowski loop and flux loop

Hall dynamo probe

Hall and MHD dynamo measurement



1st pulse

Core

OFC

Core

Core

OFC

OFC

Toroidal current
density

Toroidal current
density

2nd pulseMHD

Hall

MHD

Hall

/en
~~~~Eηj

||||||||
 BjBv

00

MHD dynamo Hall dynamo

rt

r
/LVrE

p

|||| 



2

)(
)(

g0 




V200100
g

~V
||


Core regionOFC region

Ωm1062 5 ~η
||

  ln)(kTZ1022.5ηη 2/3
eeff

5
spitzer

||

V/m2010
0

~E
||


V/m93
0

~ηj
||


 /en
~~~~

||||
BjBv

V/m1 V/m14~6

V0
g


||
V

V/m2
0


||

E

V/m124
0

~ηj
||


Parallel mean-field Ohm's law

Isat

Dynamo balances Ohm’s law



MHD dynamo

Anti-MHD dynamo

CoreOFC

Hall dynamo

Radial profile of dynamo electric field
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• Hall dynamo driven current in the OFC is the same direction as the mean current.

Collisional drag of electrons on the
ions accelerates the ions in the core.

• MHD anti-dynamo electric field in the OFC reduces the mean current.

Ions are accelerated due to EHall in the
direction of the current in the OFC.

Electron locking model [1]

[1] T.R. Jarboe et al., Nucl. Fusion 51 063029 (2011).dwcetie>d/R

Electrons become slow down
due to anti-dynamo EMHD



Second-pulse
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• Alfven wave is excited by the magnetic
reconnection around the X-point.
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3D MHD simulation for High-q ST
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 The HIST device has been developed towards high-β and quasi-
steady-state sustainment of high-q and low-q ST plasmas by Multi-
pulsing CHI method. We have successfully demonstrated the
flux/current amplification and sustainment of the plasmas in the
double gun pulse experiment. We have investigated the
characteristics of the double CHI driven ST plasmas. Muti-pulsing
CHI experiments are planned for the future work.

 We have observed the poloidal flow shear between the OFC
region and the closed flux region. The ion diamagnetic drift due to
a steep density gradient observed there could account for it.

 It has been the first time to measure simultaneously the Hall and
MHD dynamo spatial profile for the ST. The relative contributions of
the different dynamo electric field on the driven current have been
investigated to verify mean Ohm’s law balance. Two-fluid Hall
dynamo is essential to the CHI current drive mechanisms.

Summary
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