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A Puzzle: Some NSTX plasmas violate profile stiffness. 
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Can heat some plasmas 
to very steep gradients. 

Should be unstable to electron temperature 
gradient (ETG) turbulence. Yuh et al PoP (2009)
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Goal of work: Understand NSTX behavior 

•  Can trigger electron Internal Transport Barriers (e-ITB) that 
push past ETG stiffness threshold 

•  Coincides with lowering of electron-scale density fluctuations 

•  Electron transport seems to drop as well 

•  Shear in the magnetic field geometry seems to be important 
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Can numerical simulations help shed 
light on the experimental observations? 

•  What is the connection between electron turbulence and 
transport during these e-ITB phases? 

•  What role does magnetic shear play in the suppression of 
ETG turbulence and/or the formation of e-ITBs? 



ETG e-ITB NSTX (Peterson) April, 2011 

Baseline NSTX Reversed Shear  
Discharge #129354 @ 232 ms 
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•  e-ITB during strong reversed shear 

•  RF heat drives high electron 
temperature 

•  ETG unstable:  
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Physical Parameters 
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Simulation Plan: Probe Nonlinear Critical Gradient 

•  GYRO* 

•  Scan electron temperature gradient 

•  Nonlinear flux tube simulations 

•  Vary magnetic shear 

•  Electrostatic 

•  No background flow shear 

•  Electron-scale resolution 

•  ~100,000 CPU hours each at ORNL Cray XT 

•  ~3 million total CPU hours 
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* J. Candy and E.A. Belli, GYRO Technical Guide, 
General Atomics Report GA-A26818 (2010).
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Numeric Details 
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•  All species gyrokinetic: electrons, deuterium 

•  22 points per passing particle orbit 

•  12 energy, 24 pitch angle grid points 

•  24 toroidal modes 

•  Electron gyro-radius radial grid resolution 
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The Dimits Shift is very large for baseline negative shear. 
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The up-shift strength depends upon magnetic shear. 
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Nonlinear up-shift 
of critical ETG 

gradient 
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Stiff Profile Threshold Increases With Reversed Shear 
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Experimentally 
Relevant 

Transport Levels 
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Below Nonlinear Critical Gradient Threshold:  
Streamers Sheared Apart, Low Transport 
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Eddies Sheared, 
Saturate at Low 

Amplitude 

Linearly Unstable, 
But Low Levels of 

Transport 

〈ñe〉rms ≈ 0.3%

R/LTe ≈ 9
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Above Nonlinear Critical Gradient Threshold: 
 Streamers Not on Midplane, Large Transport 
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Radial Streamers 
out of Top and 

Bottom  

Broadband 
Turbulence 

〈ñe〉rms ≈ 1.1%

R/LTe ≈ 22
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Above nonlinear critical gradient, broadband turbulence and 
linearly subdominant peak of transport. 

13 

M
o

d
e 

Time 

Peak Linear Drive 

Peak 
Transport 
from Off-
Midplane 

Streamers 

Broadband 
Turbulence 



ETG e-ITB NSTX (Peterson) April, 2011 

Evidence of Energy Transfer to Off-Midplane Streamers 
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Modal and Poloidal 
Dependence of 

Fluctuation Amplitude 

Peak ETG 
Drive 

Off-
midplane 
streamers 

NL Energy 
Transfer 

• If donʼt include peak ETG drive, amplitude 
of off-midplane streamers drops.
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Some Testable (?) Speculations 

•  Performance of e-ITBs is limited by nonlinear critical gradient 
for transport. 
–  Map out critical gradient as function of shear, compare with xp data 
–  New validation experiment on NSTX 

•  Reversed shear discharges can still have significant ETG 
turbulence off the midplane. 
–  Move high-k, look for difference / stronger fluctuations away from 

midplane 

•  Transport relies on interplay between very high-k and high-k. 
–  Energy transport diagnostics in simulation 

–  Map out linear stability properties of both modes, compare w/ nonlin. 

•  “Bursty” turbulence is characteristic of turbulence near 
nonlinear critical gradient. 
–  Synthetic diagnostics 
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Future Work 

•  Thorough analysis of high-transport case 
–  Goal: investigate nonlinear gradient threshold, top/bottom streamers 

•  Apply mag. shear to gyrokinetic secondary instability theory 
–  Goal: investigate how strength of ETG damping changes with shear 

–  Goal: investigate GK vs. adiabatic ions 

•  Calculate synthetic high-k spectra based on these GK 
simulations 
–  Goal: comparison with high-k experimental data 

–  Goal: investigate “bursty” high-k signals in this regime 

•  Multi-scale nonlinear simulations 
–  Goal: link ion and electron scales, especially if this top/bottom mode 

is important. 

•  Numerical convergence studies 
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Conclusions 

•  Reversed shear temperature gradient scans find a second-
instability threshold for electron transport. 
–  ~ 3x the linear critical gradient 

•  Nonlinear critical gradient is consistent with observations of 
maximum attainable gradients in NSTX reversed shear 
discharges. 

•  Above threshold, a slow-growing mode saturates with 
highest amplitude, causes large amount of transport. 
–  Nonlinearly driven by peak ETG drive 

–  Streamers out of top and bottom: midplane streamers sheared 
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Thank You 
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Extra Slides 
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Early Stage of Reversed Shear 
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Density Fluctuation Evolution 
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Poloidal Dependence of Power Spectra Amplitudes 
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Mode @ Transport Peak Found With Both Linear  
Initial Value and Field Eigenmode Solvers 
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Nonlinearly Saturates at 
Highest Amplitude 
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Low-transport modes centered on Midplane 
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Isolated Fluctuation 
Bands in k-space 
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Below nonlinear critical gradient, no broadband turbulence. 

25 

M
o

d
e 

Time 



ETG e-ITB NSTX (Peterson) April, 2011 

Zonal Flows Appear Correlated with Finite-n Potential 
Fluctuations Below Critical Gradient 
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Low-
magnitude 
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Above Nonlinear Critical Gradient, Quicker Saturation 
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Zonal Flows Actually Stronger 
than Below Threshold 
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The magnetic field shear can regulate turbulence. 
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Antonsen et al Phys. Plasmas (1996)


Zero Shear 

Positive Shear 

Negative Shear 

Jenko and Dorland PRL (2002)


ETG Heat Diffusivity vs. Driving Gradient 


