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XP1031: MHD/ELM stability dependence on 
thermoelectric J, edge J, and collisionality

• Motivation

Test the role of field-aligned and toroidal current and collisionality in ELM 
stability, making connection to general macroscopic stability

Verify a broader model of ELM stability that is consistent with existing work, 
and further explains apparent incongruities from present experiments 

• Goals/Approach

Test expectations of expanded ELM stability theory using relatively 
straightforward machine capabilities

• Focus on altering field-aligned and edge toroidal J, 3D field amplitude, collisionality

Determine if ELM stability follows theory

• May provide understanding of ELM mitigation/excitation

• Link expanded theory to peeling/ballooning model, link to general ideal stability

• Addresses

ITPA experiments R10-1, R10-3, MDC-2, PEP-25; ITER Urgent task re: ELMs
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XP818: Successfully altered ELM stability, but left us 
with more questions than answers…

• Approach/Expectations

Mitigate ELMs by ergodizing plasma in the pedestal region using non-
axisymmetric (3D) field, reducing pressure gradient drive of ELM

• Expand past NSTX XP by Evans, et al., that used only n = 3 DC fields

Calculated favorable 3D field spectra for ELM mitigation, based on Chirikov
profile and DIII-D experience

• Vacuum and IPEC studies conducted by J-K. Park to determine best configurations

• Various fields - odd and even parity, both AC and DC fields run in experiment

• Lower q95 target plasma thought favorable

• Reality

Favorable NA applied fields triggered ELMs, rather than mitigating them

• ELM frequency changed, compound ELM events produced

• ELM dynamics changed for odd, even, mixed parity (“2+3”) 3D fields, AC and DC 
fields produced similar results

• Supported further studies by Canik, et al. to trigger ELMs “on-demand”

What physics model can explain these unexpected results?
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XP818: New n = 2 config. used to compare to past n = 3 results

n = 2 field configuration (planform view) n = 3 field configuration (planform view)

S.P. Gerhardt
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XP818 Vacuum, IPEC computed Chirikov parameter > 1 near 
edge for n = 2, n = 3 field configurations used in experiments

• IPEC shows n = 4 significantly reduced
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• n = 3 Chirikov > 1 at ψN ~ 0.8
J-K. Park
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XP818: Reduced ELM frequency, increased Dα duration 
observed in AC applied field configurations

• ELMs broaden, roughly match frequency of applied field
• Broadening due to multiple ELMs/filaments “compounded” together

effectively decreases frequency

n = 2 AC field, 70 Hz, 5.5 kA peak-to-peak
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Test an expanded model for ELM stability in NSTX
• Stability model / Features

Consider a model that addresses non-linear ELM dynamics

• Highlight of present model is instability drive due to thermoelectric (TE) currents 
(Evans, et al., JNM 2009)

3-D field splits smooth separatrix surface into two unique invariant manifolds

Overlap of these invariant manifolds creates a “homoclinic tangle”, enhances TE current

• Behavior of model can be tested in controlled NSTX experiment
Higher 3D field amplitude increases TE current – DESTABILIZING (XP818)

TE current connection length decreases as X-point moved closer to wall – DESTABILIZING

» LSN vs. USN should be differ due to grad(B) drift – scaling unknown

as pedestal electron collisionality decreases: (i) ELM size / depth of penetration increases, 
(ii) ELMs become larger, have lower frequency

Model is complementary to standard peeling/ballooning model

• Results of peeling/ballooning linear growth model for NSTX (R. Maingi, et al. PRL 
2009) examine grad(p) drive; present study expands to other sources of instability

• Test / compare TE current drive to toroidal current instability drive

Positive edge toroidal current drives macroscopic MHD instabilities

• Grad(p) drive already tested by Maingi, et al. Focus here on current drive and 
collisionality aspects of the instability
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TE current connection length decreased by 3D field

T.E. Evans, et al., Jour. Nucl. Mat. 390-391 (2009) 789.

• Straightforward experimental approaches to 
vary key physics parameters in XP

Vary TE current connection length
• Shift plasma vertical position (LSN, DND, USN)

• Closer proximity to the wall is destabilizing

Vary 3D field amplitude
• Larger field amplitude is destabilizing

Vary toroidal current density near the edge
• Increased J increases peeling mode drive

• Compare ramped vs. fixed q cases
Examine possible resonance effect

Homoclinic tangle rotates when |dq/dt| > 0, can 
change TE, changing stability

Vary collisionality with LLD (when pumping)Homoclinic
tangle
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Ideal MHD model expects stabilizing/destabilizing 
resonance effect near marginal stability

L. Zakharov

γ2

• Connect peeling/ballooning mode current drive to q resonance variation

Slow Ip ramps at fixed Bt will scan q

• Examine “which q” matters
If plasma is ergodized from the pedestal outward, then it’s the first key rational outside of 
the pedestal position

• Note that finite |dq/dt| will lead to rotation of homoclinic tangle and modulation of 
the striations – observable by fast IR camera (TE current modulated as well)

Slow Ip ramps at fixed q is an important comparison to finite |dq/dt| case
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XP1031: MHD/ELM stability dependence on 
thermoelectric J, edge J, and collisionality – shot plan

Task Number of Shots

1) Generate target

A) Preferable is LSN ELMing plasma target (shot 137564), suitable for +/- Z movement 2

- (choose 3D field magnitude based on XP818 experience: n = 3 configuration also allows use of n = 1)

- Plasma control: suggest (i) PF3-boundary position (squareness), (ii) DRSEP, (option: use outer SP control) 

2) Vary TE current connection length at fixed 3D field

A) LSN: vary Z until ELMs appear or disappear (three Z positions) 5

B) DND: 2

C) USN: (two Z positions) - (contrast grad(B) drift direction / effect to condition (2A)) 4

3) Vary 3D field amplitude

A) near marginal condition from (2), still ELMing, decrease n = 3 field until ELMs go away 3

B) near marginal condition from (2), not ELMing, increase n = 3 field until ELMs return 3

4) Vary toroidal current density near the edge

A) near marginal condition from (2), still ELMing, decrease Ip with slow ramp, attempt ELM stabilization 3

B) near marginal condition from (2), not ELMing, increase Ip with slow ramp, for ELM destabilization 3

C) redo (A) and (B) with TF ramp up/down to keep q approximately fixed 4 

5) Vary collisionality with LLD

A) Rerun successful conditions above at reduced collisionality with LLD 16

Total: 29;    16

0.5 day

0.5 day
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XP1031: MHD/ELM stability dependence on 
thermoelectric J, edge J, and collisionality –

Diagnostics, etc.
• Required diagnostics / capabilities

RWM coils in standard n = 1,3 configuration

CHERS toroidal rotation measurement

Thomson scattering

MSE 

Standard magnetics / diamagnetic loop

• Highly desired diagnostics
LLD shunt tile measurements of SOL currents

Langmuir probes set up for edge current measurement

Fast IR camera and/or LLD fast cameras

USXR
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